These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31245682)
1. Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance. Yamazaki S; Ueda Y; Mukai A; Ochiai K; Matoh T Plant Direct; 2018 Jan; 2(1):e00034. PubMed ID: 31245682 [TBL] [Abstract][Full Text] [Related]
2. Phytochelatin Synthase has Contrasting Effects on Cadmium and Arsenic Accumulation in Rice Grains. Uraguchi S; Tanaka N; Hofmann C; Abiko K; Ohkama-Ohtsu N; Weber M; Kamiya T; Sone Y; Nakamura R; Takanezawa Y; Kiyono M; Fujiwara T; Clemens S Plant Cell Physiol; 2017 Oct; 58(10):1730-1742. PubMed ID: 29016913 [TBL] [Abstract][Full Text] [Related]
3. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Das N; Bhattacharya S; Bhattacharyya S; Maiti MK Plant Mol Biol; 2017 May; 94(1-2):167-183. PubMed ID: 28283922 [TBL] [Abstract][Full Text] [Related]
4. Domain exchange between Oryza sativa phytochelatin synthases reveals a region that determines responsiveness to arsenic and heavy metals. Hayashi S; Tanikawa H; Kuramata M; Abe T; Ishikawa S Biochem Biophys Res Commun; 2020 Mar; 523(2):548-553. PubMed ID: 31932034 [TBL] [Abstract][Full Text] [Related]
5. Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. Hayashi S; Kuramata M; Abe T; Takagi H; Ozawa K; Ishikawa S Plant J; 2017 Sep; 91(5):840-848. PubMed ID: 28621830 [TBL] [Abstract][Full Text] [Related]
6. The critical role of the shoot base in inhibiting cadmium transport from root to shoot in a cadmium-safe rice line (Oryza sativa L.). Wang K; Yu H; Ye D; Wang Y; Zhang X; Huang H; Zheng Z; Li T Sci Total Environ; 2021 Apr; 765():142710. PubMed ID: 33069470 [TBL] [Abstract][Full Text] [Related]
8. Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity. Wang F; Wang Z; Zhu C Acta Biochim Biophys Sin (Shanghai); 2012 Oct; 44(10):886-93. PubMed ID: 23017837 [TBL] [Abstract][Full Text] [Related]
9. Crucial roles of cadmium retention in nodeⅡ for restraining cadmium transport from straw to ear at reproductive period in a grain low-cadmium rice line (Oryza sativa L.). Guo J; Zhang X; Ye D; Huang H; Wang Y; Zheng Z; Li T; Yu H Ecotoxicol Environ Saf; 2020 Dec; 205():111323. PubMed ID: 32956864 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot. Pomponi M; Censi V; Di Girolamo V; De Paolis A; di Toppi LS; Aromolo R; Costantino P; Cardarelli M Planta; 2006 Jan; 223(2):180-90. PubMed ID: 16133212 [TBL] [Abstract][Full Text] [Related]
11. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Gasic K; Korban SS Plant Mol Biol; 2007 Jul; 64(4):361-9. PubMed ID: 17390107 [TBL] [Abstract][Full Text] [Related]
12. Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Begum MC; Islam MS; Islam M; Amin R; Parvez MS; Kabir AH Plant Physiol Biochem; 2016 Jul; 104():266-77. PubMed ID: 27061371 [TBL] [Abstract][Full Text] [Related]
13. Possible roles of phytochelatins and glutathione metabolism in cadmium tolerance in chickpea roots. Gupta DK; Tohoyama H; Joho M; Inouhe M J Plant Res; 2002 Dec; 115(6):429-37. PubMed ID: 12579446 [TBL] [Abstract][Full Text] [Related]
14. OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. Yang J; Gao MX; Hu H; Ding XM; Lin HW; Wang L; Xu JM; Mao CZ; Zhao FJ; Wu ZC New Phytol; 2016 Jul; 211(2):658-70. PubMed ID: 26918637 [TBL] [Abstract][Full Text] [Related]
15. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864 [TBL] [Abstract][Full Text] [Related]
16. Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Picault N; Cazalé AC; Beyly A; Cuiné S; Carrier P; Luu DT; Forestier C; Peltier G Biochimie; 2006 Nov; 88(11):1743-50. PubMed ID: 16766112 [TBL] [Abstract][Full Text] [Related]
17. Silicon induces phytochelatin and ROS scavengers facilitating cadmium detoxification in rice. Bari MA; Prity SA; Das U; Akther MS; Sajib SA; Reza MA; Kabir AH Plant Biol (Stuttg); 2020 May; 22(3):472-479. PubMed ID: 31990448 [TBL] [Abstract][Full Text] [Related]
18. The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. Wojas S; Ruszczyńska A; Bulska E; Clemens S; Antosiewicz DM J Plant Physiol; 2010 Aug; 167(12):981-8. PubMed ID: 20381898 [TBL] [Abstract][Full Text] [Related]
19. Exogenous melatonin regulates endogenous phytohormone homeostasis and thiol-mediated detoxification in two indica rice cultivars under arsenic stress. Samanta S; Banerjee A; Roychoudhury A Plant Cell Rep; 2021 Aug; 40(8):1585-1602. PubMed ID: 34003317 [TBL] [Abstract][Full Text] [Related]
20. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Brunetti P; Zanella L; De Paolis A; Di Litta D; Cecchetti V; Falasca G; Barbieri M; Altamura MM; Costantino P; Cardarelli M J Exp Bot; 2015 Jul; 66(13):3815-29. PubMed ID: 25900618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]