BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31245714)

  • 1. Ethylene causes transcriptomic changes in
    Lacey RF; Allen CJ; Bakshi A; Binder BM
    Plant Direct; 2018 Mar; 2(3):e00048. PubMed ID: 31245714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanobacteria Respond to Low Levels of Ethylene.
    Allen CJ; Lacey RF; Binder Bickford AB; Beshears CP; Gilmartin CJ; Binder BM
    Front Plant Sci; 2019; 10():950. PubMed ID: 31417582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor.
    Lacey RF; Binder BM
    Plant Physiol; 2016 Aug; 171(4):2798-809. PubMed ID: 27246094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803.
    Song JY; Cho HS; Cho JI; Jeon JS; Lagarias JC; Park YI
    Proc Natl Acad Sci U S A; 2011 Jun; 108(26):10780-5. PubMed ID: 21670284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene production in
    Kuchmina E; Klähn S; Jakob A; Bigott W; Enke H; Dühring U; Wilde A
    Microbiology (Reading); 2017 Dec; 163(12):1937-1945. PubMed ID: 29091581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803.
    Narikawa R; Suzuki F; Yoshihara S; Higashi S; Watanabe M; Ikeuchi M
    Plant Cell Physiol; 2011 Dec; 52(12):2214-24. PubMed ID: 22065076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Inversion of phototaxis in cells of Synechocystis sp. PCC 6803 determined by a mutation in the regulatory gene prqR].
    Kirik IA; Nefedova LN; Fantin IuS; Babykin MM
    Genetika; 2008 Apr; 44(4):474-82. PubMed ID: 18666550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses.
    Saha R; Liu D; Hoynes-O'Connor A; Liberton M; Yu J; Bhattacharyya-Pakrasi M; Balassy A; Zhang F; Moon TS; Maranas CD; Pakrasi HB
    mBio; 2016 May; 7(3):. PubMed ID: 27143387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Culturing Synechocystis sp. Strain PCC 6803 with N2 and CO2 in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs.
    Angermayr SA; van Alphen P; Hasdemir D; Kramer G; Iqbal M; van Grondelle W; Hoefsloot HC; Choi YH; Hellingwerf KJ
    Appl Environ Microbiol; 2016 Jul; 82(14):4180-4189. PubMed ID: 27208121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The sll0886 gene, controlling light-activated heterotrophic growth, is involved in regulating phototaxis in cyanobacterium Synechocystis sp. PCC 6893].
    Kirik IA; Babykin MM
    Genetika; 2008 May; 44(5):717-20. PubMed ID: 18672807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics of the Blue Light-Dependent Signal Cascade That Controls Phototaxis in the Cyanobacterium Synechocystis sp. PCC6803.
    Sugimoto Y; Nakamura H; Ren S; Hori K; Masuda S
    Plant Cell Physiol; 2017 Mar; 58(3):458-465. PubMed ID: 28028165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photomovement of the gliding cyanobacterium Synechocystis sp. PCC 6803.
    Choi JS; Chung YH; Moon YJ; Kim C; Watanabe M; Song PS; Joe CO; Bogorad L; Park YM
    Photochem Photobiol; 1999 Jul; 70(1):95-102. PubMed ID: 10420848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The (PATAN)-CheY-Like Response Regulator PixE Interacts with the Motor ATPase PilB1 to Control Negative Phototaxis in the Cyanobacterium Synechocystis sp. PCC 6803.
    Jakob A; Nakamura H; Kobayashi A; Sugimoto Y; Wilde A; Masuda S
    Plant Cell Physiol; 2020 Feb; 61(2):296-307. PubMed ID: 31621869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daily expression pattern of protein-encoding genes and small noncoding RNAs in synechocystis sp. strain PCC 6803.
    Beck C; Hertel S; Rediger A; Lehmann R; Wiegard A; Kölsch A; Heilmann B; Georg J; Hess WR; Axmann IM
    Appl Environ Microbiol; 2014 Sep; 80(17):5195-206. PubMed ID: 24928881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cyanopterin in UV/blue light signal transduction of cyanobacterium Synechocystis sp. PCC 6803 phototaxis.
    Moon YJ; Lee EM; Park YM; Park YS; Chung WI; Chung YH
    Plant Cell Physiol; 2010 Jun; 51(6):969-80. PubMed ID: 20418333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803.
    Zhang Z; Pendse ND; Phillips KN; Cotner JB; Khodursky A
    BMC Genomics; 2008 Jul; 9():344. PubMed ID: 18644144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking phototactic responses and modeling motility of Synechocystis sp. strain PCC6803.
    Burriesci M; Bhaya D
    J Photochem Photobiol B; 2008 May; 91(2-3):77-86. PubMed ID: 18343151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment.
    Summerfield TC; Sherman LA
    Appl Environ Microbiol; 2008 Sep; 74(17):5276-84. PubMed ID: 18606800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergent Phototactic Responses of Cyanobacteria under Complex Light Regimes.
    Chau RM; Bhaya D; Huang KC
    mBio; 2017 Mar; 8(2):. PubMed ID: 28270586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803.
    Qiao J; Huang S; Te R; Wang J; Chen L; Zhang W
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8253-64. PubMed ID: 23925534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.