These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 31246339)
21. Near-infrared aggregation-induced enhanced electrochemiluminescence from tetraphenylethylene nanocrystals: a new generation of ECL emitters. Liu JL; Zhang JQ; Tang ZL; Zhuo Y; Chai YQ; Yuan R Chem Sci; 2019 Apr; 10(16):4497-4501. PubMed ID: 31057778 [TBL] [Abstract][Full Text] [Related]
22. Distance-dependent quenching and enhancing of electrochemiluminescence from tris(2, 2'-bipyridine) ruthenium (II)/tripropylamine system by gold nanoparticles and its sensing applications. Gai QQ; Wang DM; Huang RF; Liang XX; Wu HL; Tao XY Biosens Bioelectron; 2018 Oct; 118():80-87. PubMed ID: 30056303 [TBL] [Abstract][Full Text] [Related]
23. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Shang L; Dörlich RM; Brandholt S; Schneider R; Trouillet V; Bruns M; Gerthsen D; Nienhaus GU Nanoscale; 2011 May; 3(5):2009-14. PubMed ID: 21311796 [TBL] [Abstract][Full Text] [Related]
24. Versatile High-Performance Electrochemiluminescence ELISA Platform Based on a Gold Nanocluster Probe. Peng H; Huang Z; Wu W; Liu M; Huang K; Yang Y; Deng H; Xia X; Chen W ACS Appl Mater Interfaces; 2019 Jul; 11(27):24812-24819. PubMed ID: 31241892 [TBL] [Abstract][Full Text] [Related]
25. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Liu X; Ju H Anal Chem; 2008 Jul; 80(14):5377-82. PubMed ID: 18522432 [TBL] [Abstract][Full Text] [Related]
26. Progress in electrochemiluminescence of nanoclusters: how to improve the quantum yield of nanoclusters. Ge J; Chen X; Yang J; Wang Y Analyst; 2021 Feb; 146(3):803-815. PubMed ID: 33432317 [TBL] [Abstract][Full Text] [Related]
27. Selectively Lighting Up Singlet Oxygen via Aggregation-Induced Electrochemiluminescence Energy Transfer. Gao X; Zhao H; Wang D; Xu Y; Zhang B; Zou G Anal Chem; 2022 Mar; 94(8):3718-3726. PubMed ID: 35166109 [TBL] [Abstract][Full Text] [Related]
28. Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. You JG; Tseng WL Anal Chim Acta; 2019 Oct; 1078():101-111. PubMed ID: 31358207 [TBL] [Abstract][Full Text] [Related]
29. Bright near-infrared circularly polarized electrochemiluminescence from Au Jiang L; Jing M; Yin B; Du W; Wang X; Liu Y; Chen S; Zhu M Chem Sci; 2023 Jul; 14(26):7304-7309. PubMed ID: 37416707 [TBL] [Abstract][Full Text] [Related]
30. Enhanced Electrochemiluminescence Behavior of Gold-Silver Bimetallic Nanoclusters and Its Sensing Application for Mercury(II). Zhai Q; Xing H; Zhang X; Li J; Wang E Anal Chem; 2017 Jul; 89(14):7788-7794. PubMed ID: 28677968 [TBL] [Abstract][Full Text] [Related]
31. Silver Nanoclusters for High-Efficiency Quenching of CdS Nanocrystal Electrochemiluminescence and Sensitive Detection of microRNA. Zhang YY; Feng QM; Xu JJ; Chen HY ACS Appl Mater Interfaces; 2015 Dec; 7(47):26307-14. PubMed ID: 26561442 [TBL] [Abstract][Full Text] [Related]
32. Immunoglobulin G-Encapsulated Gold Nanoclusters as Fluorescent Tags for Dot-Blot Immunoassays. Zhuang QQ; Deng HH; He SB; Peng HP; Lin Z; Xia XH; Chen W ACS Appl Mater Interfaces; 2019 Sep; 11(35):31729-31734. PubMed ID: 31411018 [TBL] [Abstract][Full Text] [Related]
33. Electroactive Metal-Organic Frameworks as Emitters for Self-Enhanced Electrochemiluminescence in Aqueous Medium. Jin Z; Zhu X; Wang N; Li Y; Ju H; Lei J Angew Chem Int Ed Engl; 2020 Jun; 59(26):10446-10450. PubMed ID: 32196901 [TBL] [Abstract][Full Text] [Related]
34. Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Cheng Y; Lei J; Chen Y; Ju H Biosens Bioelectron; 2014 Jan; 51():431-6. PubMed ID: 24011844 [TBL] [Abstract][Full Text] [Related]
35. Red-emitted electrochemiluminescence by yellow fluorescent thioglycol/glutathione dual thiolate co-coated Au nanoclusters. Jiang H; Liu L; Wang X Nanoscale; 2017 Jul; 9(28):9792-9796. PubMed ID: 28681898 [TBL] [Abstract][Full Text] [Related]
36. Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. Chang HC; Chang YF; Fan NC; Ho JA ACS Appl Mater Interfaces; 2014; 6(21):18824-31. PubMed ID: 25323388 [TBL] [Abstract][Full Text] [Related]
37. Enhancing the Electrochemiluminescence of Luminol by Chemically Modifying the Reaction Microenvironment. Qiao Y; Li Y; Fu W; Guo Z; Zheng X Anal Chem; 2018 Aug; 90(15):9629-9636. PubMed ID: 29969897 [TBL] [Abstract][Full Text] [Related]
38. MoS Zhao M; Chen AY; Huang D; Chai YQ; Zhuo Y; Yuan R Anal Chem; 2017 Aug; 89(16):8335-8342. PubMed ID: 28702989 [TBL] [Abstract][Full Text] [Related]
39. Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Cui H; Xu Y; Zhang ZF Anal Chem; 2004 Jul; 76(14):4002-10. PubMed ID: 15253635 [TBL] [Abstract][Full Text] [Related]
40. Ratiometric electrochemiluminescent strategy regulated by electrocatalysis of palladium nanocluster for immunosensing. Huang Y; Lei J; Cheng Y; Ju H Biosens Bioelectron; 2016 Mar; 77():733-9. PubMed ID: 26499869 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]