These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31246422)
1. Duplex-Specific Nuclease-Mediated Amplification Strategy for Mass Spectrometry Quantification of MiRNA-200c in Breast Cancer Stem Cells. Kuang Y; Cao J; Xu F; Chen Y Anal Chem; 2019 Jul; 91(14):8820-8826. PubMed ID: 31246422 [TBL] [Abstract][Full Text] [Related]
2. A Combination of DNA-peptide Probes and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS): A Quasi-Targeted Proteomics Approach for Multiplexed MicroRNA Quantification. Xu F; Zhou W; Cao J; Xu Q; Jiang D; Chen Y Theranostics; 2017; 7(11):2849-2862. PubMed ID: 28824720 [TBL] [Abstract][Full Text] [Related]
3. Quantification of microRNA by DNA-Peptide Probe and Liquid Chromatography-Tandem Mass Spectrometry-Based Quasi-Targeted Proteomics. Xu F; Yang T; Chen Y Anal Chem; 2016 Jan; 88(1):754-63. PubMed ID: 26641144 [TBL] [Abstract][Full Text] [Related]
4. An amplification strategy using DNA-Peptide dendrimer probe and mass spectrometry for sensitive MicroRNA detection in breast cancer. Liu L; Kuang Y; Yang H; Chen Y Anal Chim Acta; 2019 Sep; 1069():73-81. PubMed ID: 31084743 [TBL] [Abstract][Full Text] [Related]
5. A photocleavable and mass spectrometric DNA-peptide probe enables fast and specific enzyme-free detection of microRNA. Kuang Y; Liu L; Wang Z; Chen Y Talanta; 2020 May; 211():120726. PubMed ID: 32070590 [TBL] [Abstract][Full Text] [Related]
6. A Quasi-direct LC-MS/MS-based Targeted Proteomics Approach for miRNA Quantification via a Covalently Immobilized DNA-peptide Probe. Liu L; Xu Q; Hao S; Chen Y Sci Rep; 2017 Jul; 7(1):5669. PubMed ID: 28720752 [TBL] [Abstract][Full Text] [Related]
7. Mass spectrometric quantification of microRNAs in biological samples based on multistage signal amplification. Li X; Zhao J; Xu R; Pan L; Liu YM Analyst; 2020 Mar; 145(5):1783-1788. PubMed ID: 31942587 [TBL] [Abstract][Full Text] [Related]
8. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium. Feng ZM; Qiu J; Chen XW; Liao RX; Liao XY; Zhang LP; Chen X; Li Y; Chen ZT; Sun JG BMC Cancer; 2015 Sep; 15():645. PubMed ID: 26400441 [TBL] [Abstract][Full Text] [Related]
9. Lateral flow nucleic acid biosensor for sensitive detection of microRNAs based on the dual amplification strategy of duplex-specific nuclease and hybridization chain reaction. Ying N; Ju C; Sun X; Li L; Chang H; Song G; Li Z; Wan J; Dai E PLoS One; 2017; 12(9):e0185091. PubMed ID: 28945768 [TBL] [Abstract][Full Text] [Related]
10. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method. Zhang K; Wang K; Zhu X; Xu F; Xie M Biosens Bioelectron; 2017 Jan; 87():358-364. PubMed ID: 27589398 [TBL] [Abstract][Full Text] [Related]
11. Quantification of MicroRNAs by Coupling Cyclic Enzymatic Amplification with Microfluidic Voltage-Assisted Liquid Desorption Electrospray Ionization Mass Spectrometry. Li X; Rout P; Xu R; Pan L; Tchounwou PB; Ma Y; Liu YM Anal Chem; 2018 Nov; 90(22):13663-13669. PubMed ID: 30359531 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Huang J; Shangguan J; Guo Q; Ma W; Wang H; Jia R; Ye Z; He X; Wang K Analyst; 2019 Aug; 144(16):4917-4924. PubMed ID: 31313769 [TBL] [Abstract][Full Text] [Related]
13. DSN signal amplification strategy based nanochannels biosensor for the detection of miRNAs. Liao TB; Luo KX; Tu JY; Zhang YL; Zhang GJ; Sun ZY Bioelectrochemistry; 2024 Dec; 160():108771. PubMed ID: 38972158 [TBL] [Abstract][Full Text] [Related]
14. Improved Detection of HER2 by a Quasi-Targeted Proteomics Approach Using Aptamer-Peptide Probe and Liquid Chromatography-Tandem Mass Spectrometry. Zhou W; Xu F; Li D; Chen Y Clin Chem; 2018 Mar; 64(3):526-535. PubMed ID: 29142051 [TBL] [Abstract][Full Text] [Related]
15. Magnetically Assisted Immobilization-Free Detection of microRNAs Based on the Signal Amplification of Duplex-Specific Nuclease. Liu G; La M; Wang J; Liu J; Han Y; Liu L Biosensors (Basel); 2023 Jun; 13(7):. PubMed ID: 37504098 [TBL] [Abstract][Full Text] [Related]
16. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform. Zhao Q; Piao J; Peng W; Wang Y; Zhang B; Gong X; Chang J ACS Appl Mater Interfaces; 2018 Jan; 10(4):3324-3332. PubMed ID: 29300448 [TBL] [Abstract][Full Text] [Related]
17. A target-triggered dual amplification strategy for sensitive detection of microRNA. Lv W; Zhao J; Situ B; Li B; Ma W; Liu J; Wu Z; Wang W; Yan X; Zheng L Biosens Bioelectron; 2016 Sep; 83():250-5. PubMed ID: 27131998 [TBL] [Abstract][Full Text] [Related]
18. Highly Sensitive Detection of Multiple MicroRNAs by High-Performance Liquid Chromatography Coupled with Long and Short Probe-Based Recycling Amplification. Qi T; Song C; He J; Shen W; Kong D; Shi H; Tan L; Pan R; Tang S; Lee HK Anal Chem; 2020 Apr; 92(7):5033-5040. PubMed ID: 32154708 [TBL] [Abstract][Full Text] [Related]
19. A microfluidic paper-based laser-induced fluorescence sensor based on duplex-specific nuclease amplification for selective and sensitive detection of miRNAs in cancer cells. Cai X; Zhang H; Yu X; Wang W Talanta; 2020 Aug; 216():120996. PubMed ID: 32456922 [TBL] [Abstract][Full Text] [Related]
20. Cascade Amplification-Mediated In Situ Hot-Spot Assembly for MicroRNA Detection and Molecular Logic Gate Operations. Yu S; Wang Y; Jiang LP; Bi S; Zhu JJ Anal Chem; 2018 Apr; 90(7):4544-4551. PubMed ID: 29570270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]