These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31246436)
1. Transgenerational Proteome Plasticity in Resilience of a Marine Copepod in Response to Environmentally Relevant Concentrations of Microplastics. Zhang C; Jeong CB; Lee JS; Wang D; Wang M Environ Sci Technol; 2019 Jul; 53(14):8426-8436. PubMed ID: 31246436 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Shotgun Proteomics Associates Molecular-Level Cadmium Toxicity Responses with Compromised Growth and Reproduction in a Marine Copepod under Multigenerational Exposure. Wang M; Zhang C; Lee JS Environ Sci Technol; 2018 Feb; 52(3):1612-1623. PubMed ID: 29323882 [TBL] [Abstract][Full Text] [Related]
3. Impacts of mercury exposure on life history traits of Tigriopus japonicus: Multigeneration effects and recovery from pollution. Li H; Shi L; Wang D; Wang M Aquat Toxicol; 2015 Sep; 166():42-9. PubMed ID: 26210816 [TBL] [Abstract][Full Text] [Related]
4. Comparative quantitative proteomics unveils putative mechanisms involved into mercury toxicity and tolerance in Tigriopus japonicus under multigenerational exposure scenario. Xu X; Shi L; Wang M Environ Pollut; 2016 Nov; 218():1287-1297. PubMed ID: 27593353 [TBL] [Abstract][Full Text] [Related]
5. Projected near-future ocean acidification decreases mercury toxicity in marine copepods. Wang M; Chen J; Lee YH; Lee JS; Wang D Environ Pollut; 2021 Sep; 284():117140. PubMed ID: 33930777 [TBL] [Abstract][Full Text] [Related]
6. Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, copepod). Yu J; Tian JY; Xu R; Zhang ZY; Yang GP; Wang XD; Lai JG; Chen R Environ Pollut; 2020 Dec; 267():115429. PubMed ID: 32866870 [TBL] [Abstract][Full Text] [Related]
7. Effects of microplastics on marine copepods. Bai Z; Wang N; Wang M Ecotoxicol Environ Saf; 2021 Jul; 217():112243. PubMed ID: 33915449 [TBL] [Abstract][Full Text] [Related]
8. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery. Zhao F; Huang Y; Wei H; Wang M Sci Total Environ; 2024 Sep; 942():173585. PubMed ID: 38810735 [TBL] [Abstract][Full Text] [Related]
9. Microplastics at an environmentally relevant dose enhance mercury toxicity in a marine copepod under multigenerational exposure: Multi-omics perspective. Bai Z; He Y; Hu G; Cheng L; Wang M J Hazard Mater; 2024 Oct; 478():135529. PubMed ID: 39154477 [TBL] [Abstract][Full Text] [Related]
10. Acute and chronic toxicity of polychlorinated biphenyl 126 to Tigriopus japonicus: effects on survival, growth, reproduction, and intrinsic rate of population growth. Guo F; Wang L; Wang WX Environ Toxicol Chem; 2012 Mar; 31(3):639-45. PubMed ID: 22189719 [TBL] [Abstract][Full Text] [Related]
11. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Lee KW; Shim WJ; Kwon OY; Kang JH Environ Sci Technol; 2013 Oct; 47(19):11278-83. PubMed ID: 23988225 [TBL] [Abstract][Full Text] [Related]
12. Multigenerational effects of 4-methylbenzylidene camphor (4-MBC) on the survival, development and reproduction of the marine copepod Tigriopus japonicus. Chen L; Li X; Hong H; Shi D Aquat Toxicol; 2018 Jan; 194():94-102. PubMed ID: 29172130 [TBL] [Abstract][Full Text] [Related]
13. Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification. Li Y; Wang WX; Wang M Sci Rep; 2017 Mar; 7(1):324. PubMed ID: 28336926 [TBL] [Abstract][Full Text] [Related]
14. Acute and chronic combined effect of polystyrene microplastics and dibutyl phthalate on the marine copepod Tigriopus japonicus. Li Z; Zhou H; Liu Y; Zhan J; Li W; Yang K; Yi X Chemosphere; 2020 Dec; 261():127711. PubMed ID: 32731021 [TBL] [Abstract][Full Text] [Related]
15. Global Proteome Profiling of a Marine Copepod and the Mitigating Effect of Ocean Acidification on Mercury Toxicity after Multigenerational Exposure. Wang M; Lee JS; Li Y Environ Sci Technol; 2017 May; 51(10):5820-5831. PubMed ID: 28414453 [TBL] [Abstract][Full Text] [Related]
16. Low microalgae availability increases the ingestion rates and potential effects of microplastics on marine copepod Pseudodiaptomus annandalei. Cheng Y; Wang J; Yi X; Li L; Liu X; Ru S Mar Pollut Bull; 2020 Mar; 152():110919. PubMed ID: 32479292 [TBL] [Abstract][Full Text] [Related]
17. Chronic effects of nano and microplastics on reproduction and development of marine copepod Tigriopus japonicus. Kim K; Yoon H; Choi JS; Jung YJ; Park JW Ecotoxicol Environ Saf; 2022 Sep; 243():113962. PubMed ID: 35988379 [TBL] [Abstract][Full Text] [Related]
18. Nanoplastics pose a greater effect than microplastics in enhancing mercury toxicity to marine copepods. Bai Z; Zhang Y; Cheng L; Zhou X; Wang M Chemosphere; 2023 Jun; 325():138371. PubMed ID: 36906006 [TBL] [Abstract][Full Text] [Related]
19. Nanoplastics potentiate mercury toxicity in a marine copepod under multigenerational exposure. Xie D; Zhang H; Wei H; Lin L; Wang D; Wang M Aquat Toxicol; 2023 May; 258():106497. PubMed ID: 36940520 [TBL] [Abstract][Full Text] [Related]
20. Seawater warming intensifies nickel toxicity to a marine copepod: a multigenerational perspective. Zhang Y; Xie D; Lin Q; Zhou X Aquat Toxicol; 2023 Nov; 264():106730. PubMed ID: 37862730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]