BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31246436)

  • 1. Transgenerational Proteome Plasticity in Resilience of a Marine Copepod in Response to Environmentally Relevant Concentrations of Microplastics.
    Zhang C; Jeong CB; Lee JS; Wang D; Wang M
    Environ Sci Technol; 2019 Jul; 53(14):8426-8436. PubMed ID: 31246436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Shotgun Proteomics Associates Molecular-Level Cadmium Toxicity Responses with Compromised Growth and Reproduction in a Marine Copepod under Multigenerational Exposure.
    Wang M; Zhang C; Lee JS
    Environ Sci Technol; 2018 Feb; 52(3):1612-1623. PubMed ID: 29323882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of mercury exposure on life history traits of Tigriopus japonicus: Multigeneration effects and recovery from pollution.
    Li H; Shi L; Wang D; Wang M
    Aquat Toxicol; 2015 Sep; 166():42-9. PubMed ID: 26210816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative quantitative proteomics unveils putative mechanisms involved into mercury toxicity and tolerance in Tigriopus japonicus under multigenerational exposure scenario.
    Xu X; Shi L; Wang M
    Environ Pollut; 2016 Nov; 218():1287-1297. PubMed ID: 27593353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification.
    Li Y; Wang WX; Wang M
    Sci Rep; 2017 Mar; 7(1):324. PubMed ID: 28336926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projected near-future ocean acidification decreases mercury toxicity in marine copepods.
    Wang M; Chen J; Lee YH; Lee JS; Wang D
    Environ Pollut; 2021 Sep; 284():117140. PubMed ID: 33930777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, copepod).
    Yu J; Tian JY; Xu R; Zhang ZY; Yang GP; Wang XD; Lai JG; Chen R
    Environ Pollut; 2020 Dec; 267():115429. PubMed ID: 32866870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of microplastics on marine copepods.
    Bai Z; Wang N; Wang M
    Ecotoxicol Environ Saf; 2021 Jul; 217():112243. PubMed ID: 33915449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery.
    Zhao F; Huang Y; Wei H; Wang M
    Sci Total Environ; 2024 Sep; 942():173585. PubMed ID: 38810735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute and chronic toxicity of polychlorinated biphenyl 126 to Tigriopus japonicus: effects on survival, growth, reproduction, and intrinsic rate of population growth.
    Guo F; Wang L; Wang WX
    Environ Toxicol Chem; 2012 Mar; 31(3):639-45. PubMed ID: 22189719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus.
    Lee KW; Shim WJ; Kwon OY; Kang JH
    Environ Sci Technol; 2013 Oct; 47(19):11278-83. PubMed ID: 23988225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multigenerational effects of 4-methylbenzylidene camphor (4-MBC) on the survival, development and reproduction of the marine copepod Tigriopus japonicus.
    Chen L; Li X; Hong H; Shi D
    Aquat Toxicol; 2018 Jan; 194():94-102. PubMed ID: 29172130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute and chronic combined effect of polystyrene microplastics and dibutyl phthalate on the marine copepod Tigriopus japonicus.
    Li Z; Zhou H; Liu Y; Zhan J; Li W; Yang K; Yi X
    Chemosphere; 2020 Dec; 261():127711. PubMed ID: 32731021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Proteome Profiling of a Marine Copepod and the Mitigating Effect of Ocean Acidification on Mercury Toxicity after Multigenerational Exposure.
    Wang M; Lee JS; Li Y
    Environ Sci Technol; 2017 May; 51(10):5820-5831. PubMed ID: 28414453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low microalgae availability increases the ingestion rates and potential effects of microplastics on marine copepod Pseudodiaptomus annandalei.
    Cheng Y; Wang J; Yi X; Li L; Liu X; Ru S
    Mar Pollut Bull; 2020 Mar; 152():110919. PubMed ID: 32479292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic effects of nano and microplastics on reproduction and development of marine copepod Tigriopus japonicus.
    Kim K; Yoon H; Choi JS; Jung YJ; Park JW
    Ecotoxicol Environ Saf; 2022 Sep; 243():113962. PubMed ID: 35988379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoplastics pose a greater effect than microplastics in enhancing mercury toxicity to marine copepods.
    Bai Z; Zhang Y; Cheng L; Zhou X; Wang M
    Chemosphere; 2023 Jun; 325():138371. PubMed ID: 36906006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoplastics potentiate mercury toxicity in a marine copepod under multigenerational exposure.
    Xie D; Zhang H; Wei H; Lin L; Wang D; Wang M
    Aquat Toxicol; 2023 May; 258():106497. PubMed ID: 36940520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seawater warming intensifies nickel toxicity to a marine copepod: a multigenerational perspective.
    Zhang Y; Xie D; Lin Q; Zhou X
    Aquat Toxicol; 2023 Nov; 264():106730. PubMed ID: 37862730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus.
    Cole M; Lindeque P; Fileman E; Halsband C; Galloway TS
    Environ Sci Technol; 2015 Jan; 49(2):1130-7. PubMed ID: 25563688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.