BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31246457)

  • 1. A Fast Ab Initio Predictor Tool for Covalent Reactivity Estimation of Acrylamides.
    Palazzesi F; Grundl MA; Pautsch A; Weber A; Tautermann CS
    J Chem Inf Model; 2019 Aug; 59(8):3565-3571. PubMed ID: 31246457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity.
    Palazzesi F; Hermann MR; Grundl MA; Pautsch A; Seeliger D; Tautermann CS; Weber A
    J Chem Inf Model; 2020 Jun; 60(6):2915-2923. PubMed ID: 32250627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent inhibitor reactivity prediction by the electrophilicity index-in and out of scope.
    Hermann MR; Pautsch A; Grundl MA; Weber A; Tautermann CS
    J Comput Aided Mol Des; 2021 Apr; 35(4):531-539. PubMed ID: 33015740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the Armory: Predicting and Tuning Covalent Warhead Reactivity.
    Lonsdale R; Burgess J; Colclough N; Davies NL; Lenz EM; Orton AL; Ward RA
    J Chem Inf Model; 2017 Dec; 57(12):3124-3137. PubMed ID: 29131621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding Mode Prediction and Virtual Screening Applications by Covalent Docking.
    Scarpino A; Ferenczy GG; Keserű GM
    Methods Mol Biol; 2021; 2266():73-88. PubMed ID: 33759121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting biomolecules with reversible covalent chemistry.
    Bandyopadhyay A; Gao J
    Curr Opin Chem Biol; 2016 Oct; 34():110-116. PubMed ID: 27599186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the reactivity of S
    Mukherjee H; Debreczeni J; Breed J; Tentarelli S; Aquila B; Dowling JE; Whitty A; Grimster NP
    Org Biomol Chem; 2017 Nov; 15(45):9685-9695. PubMed ID: 29119993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limitations of Ligand-Only Approaches for Predicting the Reactivity of Covalent Inhibitors.
    Voice A; Tresadern G; van Vlijmen H; Mulholland A
    J Chem Inf Model; 2019 Oct; 59(10):4220-4227. PubMed ID: 31498988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation.
    Yu W; Weber DJ; MacKerell AD
    J Chem Theory Comput; 2023 May; 19(10):3007-3021. PubMed ID: 37115781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanics/molecular mechanics modeling of covalent addition between EGFR-cysteine 797 and N-(4-anilinoquinazolin-6-yl) acrylamide.
    Capoferri L; Lodola A; Rivara S; Mor M
    J Chem Inf Model; 2015 Mar; 55(3):589-99. PubMed ID: 25658136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterising covalent warhead reactivity.
    Martin JS; MacKenzie CJ; Fletcher D; Gilbert IH
    Bioorg Med Chem; 2019 May; 27(10):2066-2074. PubMed ID: 30975501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BIreactive: Expanding the Scope of Reactivity Predictions to Propynamides.
    Hermann MR; Tautermann CS; Sieger P; Grundl MA; Weber A
    Pharmaceuticals (Basel); 2023 Jan; 16(1):. PubMed ID: 36678612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Dually Activated Michael Acceptor to the Rational Design of Reversible Covalent Inhibitor for Enterovirus 71 3C Protease.
    Ma Y; Li L; He S; Shang C; Sun Y; Liu N; Meek TD; Wang Y; Shang L
    J Med Chem; 2019 Jul; 62(13):6146-6162. PubMed ID: 31184893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology.
    Gehringer M; Laufer SA
    J Med Chem; 2019 Jun; 62(12):5673-5724. PubMed ID: 30565923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based design and synthesis of covalent-reversible inhibitors to overcome drug resistance in EGFR.
    Basu D; Richters A; Rauh D
    Bioorg Med Chem; 2015 Jun; 23(12):2767-80. PubMed ID: 25975640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational studies (FTIR and Raman), conformational analysis, NBO, HOMO-LUMO and reactivity descriptors of S-methyl thiobutanoate, CH3CH2CH2C(O)SCH3.
    Gil DM; Tuttolomondo ME; Ben Altabef A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():408-18. PubMed ID: 25974674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Atomistic Modeling of Irreversible Covalent Inhibitor Binding Kinetics.
    Yu HS; Gao C; Lupyan D; Wu Y; Kimura T; Wu C; Jacobson L; Harder E; Abel R; Wang L
    J Chem Inf Model; 2019 Sep; 59(9):3955-3967. PubMed ID: 31425654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles.
    Serafimova IM; Pufall MA; Krishnan S; Duda K; Cohen MS; Maglathlin RL; McFarland JM; Miller RM; Frödin M; Taunton J
    Nat Chem Biol; 2012 Apr; 8(5):471-6. PubMed ID: 22466421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative roles of K region and bay region towards determining the carcinogenic potencies of polycyclic aromatic hydrocarbons.
    Mohammad SN
    Cancer Biochem Biophys; 1985 Jun; 8(1):41-6. PubMed ID: 4027944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of Acrylamides Causes Cytotoxicity and Activates Oxidative Stress Response.
    Huchthausen J; Escher BI; Grasse N; König M; Beil S; Henneberger L
    Chem Res Toxicol; 2023 Aug; 36(8):1374-1385. PubMed ID: 37531411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.