These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3124658)

  • 1. Covalent binding of acetaldehyde to proteins: participation of lysine residues.
    Tuma DJ; Newman MR; Donohue TM; Sorrell MF
    Alcohol Clin Exp Res; 1987 Dec; 11(6):579-84. PubMed ID: 3124658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of acetaldehyde-protein adduct formation by L-ascorbate.
    Tuma DJ; Donohue TM; Medina VA; Sorrell MF
    Arch Biochem Biophys; 1984 Nov; 234(2):377-81. PubMed ID: 6093697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent binding of acetaldehyde to type III collagen.
    Jukkola A; Niemelä O
    Biochem Biophys Res Commun; 1989 Feb; 159(1):163-9. PubMed ID: 2493786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent binding of acetaldehyde to tubulin: evidence for preferential binding to the alpha-chain.
    Jennett RB; Sorrell MF; Johnson EL; Tuma DJ
    Arch Biochem Biophys; 1987 Jul; 256(1):10-8. PubMed ID: 3606116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetaldehyde adducts with proteins: binding of [14C]acetaldehyde to serum albumin.
    Donohue TM; Tuma DJ; Sorrell MF
    Arch Biochem Biophys; 1983 Jan; 220(1):239-46. PubMed ID: 6830235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of acetaldehyde with proteins: formation of stable fluorescent adducts.
    Hoffmann T; Meyer RJ; Sorrell MF; Tuma DJ
    Alcohol Clin Exp Res; 1993 Feb; 17(1):69-74. PubMed ID: 8452210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p-Hydroxyphenylacetaldehyde, the major product of L-tyrosine oxidation by the myeloperoxidase-H2O2-chloride system of phagocytes, covalently modifies epsilon-amino groups of protein lysine residues.
    Hazen SL; Gaut JP; Hsu FF; Crowley JR; d'Avignon A; Heinecke JW
    J Biol Chem; 1997 Jul; 272(27):16990-8. PubMed ID: 9202012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical implications of acetaldehyde adducts with hemoglobin.
    Peterson CM; Nguyen LB
    Prog Clin Biol Res; 1985; 183():19-30. PubMed ID: 3901019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The extent of N epsilon-(carboxymethyl)lysine formation in lens proteins and polylysine by the autoxidation products of ascorbic acid.
    Slight SH; Prabhakaram M; Shin DB; Feather MS; Ortwerth BJ
    Biochim Biophys Acta; 1992 Sep; 1117(2):199-206. PubMed ID: 1525181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibodies made against a formaldehyde-protein adduct cross react with an acetaldehyde-protein adduct. Implications for the origin of antibodies in human serum which recognize acetaldehyde-protein adducts.
    Pietrzak ER; Shanley BC; Kroon PA
    Alcohol Alcohol; 1995 May; 30(3):373-8. PubMed ID: 7545992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the Bacillus cereus phosphonoacetaldehyde hydrolase. Evidence for a Schiff base mechanism and sequence analysis of an active-site peptide containing the catalytic lysine residue.
    Olsen DB; Hepburn TW; Moos M; Mariano PS; Dunaway-Mariano D
    Biochemistry; 1988 Mar; 27(6):2229-34. PubMed ID: 3132206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chemistry of acetaldehyde-protein adducts.
    Tuma DJ; Hoffman T; Sorrell MF
    Alcohol Alcohol Suppl; 1991; 1():271-6. PubMed ID: 1845549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substoichiometric inhibition of microtubule formation by acetaldehyde-tubulin adducts.
    Smith SL; Jennett RB; Sorrell MF; Tuma DJ
    Biochem Pharmacol; 1992 Jul; 44(1):65-72. PubMed ID: 1632840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent binding of acetaldehyde selectively inhibits the catalytic activity of lysine-dependent enzymes.
    Mauch TJ; Donohue TM; Zetterman RK; Sorrell MF; Tuma DJ
    Hepatology; 1986; 6(2):263-9. PubMed ID: 2937708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction of aflatoxin B(1) oxidation products with lysine.
    Guengerich FP; Arneson KO; Williams KM; Deng Z; Harris TM
    Chem Res Toxicol; 2002 Jun; 15(6):780-92. PubMed ID: 12067245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterisation of acetaldehyde adducts formed by a synthetic peptide mimicking the N-terminus of the hemoglobin beta-chain under reducing and nonreducing conditions.
    Sillanaukee P; Hurme L; Tuominen J; Ranta E; Nikkari S; Seppä K
    Eur J Biochem; 1996 Aug; 240(1):30-6. PubMed ID: 8797832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of reduced acetaldehyde protein adducts using a unique monoclonal antibody.
    Klassen LW; Tuma DJ; Sorrell MF; McDonald TL; DeVasure JM; Thiele GM
    Alcohol Clin Exp Res; 1994 Feb; 18(1):164-71. PubMed ID: 8198215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of acetate and production of ethyl-lysine in the reaction of acetaldehyde plus serum albumin.
    Moncada C; Israel Y
    Alcohol; 1999 Jan; 17(1):87-91. PubMed ID: 9895041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nonenzymatic glycosylation of collagen.
    Rogozinski S; Blumenfeld OO; Seifter S
    Arch Biochem Biophys; 1983 Mar; 221(2):428-37. PubMed ID: 6838198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional consequences of acetaldehyde binding to proteins.
    Tuma DJ; Sorrell MF
    Alcohol Alcohol Suppl; 1987; 1():61-6. PubMed ID: 3122776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.