BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31246972)

  • 1. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network.
    Aufrecht JA; Fowlkes JD; Bible AN; Morrell-Falvey J; Doktycz MJ; Retterer ST
    PLoS One; 2019; 14(6):e0218316. PubMed ID: 31246972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphogenesis of Biofilms in Porous Media and Control on Hydrodynamics.
    Kurz DL; Secchi E; Stocker R; Jimenez-Martinez J
    Environ Sci Technol; 2023 Apr; 57(14):5666-5677. PubMed ID: 36976631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic Platform to Study Bioclogging in Porous Media.
    Kurz DL; Secchi E; Stocker R; Jimenez-Martinez J
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36314844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial scattering in microfluidic crystal flows reveals giant active Taylor-Aris dispersion.
    Dehkharghani A; Waisbord N; Dunkel J; Guasto JS
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11119-11124. PubMed ID: 31097583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal Biofilm Heterogeneities Enhance Solute Mixing and Chemical Reactions in Porous Media.
    Markale I; Carrel M; Kurz DL; Morales VL; Holzner M; Jiménez-Martínez J
    Environ Sci Technol; 2023 May; 57(21):8065-8074. PubMed ID: 37205794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The porous structure induced heterogeneous and localized failure of the biofilm in microfluidic channels.
    Tang Y; Tao C; Zhang Z; Liu S; Dong F; Zhang D; Zhang J; Wang X
    Water Sci Technol; 2023 Dec; 88(12):3181-3193. PubMed ID: 38154803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale.
    Scheidweiler D; Miele F; Peter H; Battin TJ; de Anna P
    J R Soc Interface; 2020 Mar; 17(164):20200046. PubMed ID: 32208823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial competition in porous environments can select against rapid biofilm growth.
    Coyte KZ; Tabuteau H; Gaffney EA; Foster KR; Durham WM
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E161-E170. PubMed ID: 28007984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the impact of evolving biofilms on flow in porous media inside a microfluidic channel.
    Karimifard S; Li X; Elowsky C; Li Y
    Water Res; 2021 Jan; 188():116536. PubMed ID: 33125999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pore-scale reactive transport modeling study for quorum sensing-driven biofilm dispersal in heterogeneous porous media.
    Jung H
    Math Biosci; 2024 Jan; 367():109126. PubMed ID: 38070765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels.
    Liu N; Skauge T; Landa-Marbán D; Hovland B; Thorbjørnsen B; Radu FA; Vik BF; Baumann T; Bødtker G
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):855-868. PubMed ID: 30874983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
    Wang S; Zhu H; Zheng G; Dong F; Liu C
    Appl Environ Microbiol; 2022 Nov; 88(22):e0107222. PubMed ID: 36300948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.
    Carrel M; Morales VL; Beltran MA; Derlon N; Kaufmann R; Morgenroth E; Holzner M
    Water Res; 2018 May; 134():280-291. PubMed ID: 29433078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Fluidic Devices with Microscopy and Flow Cytometry to Study Microbial Transport in Porous Media Across Spatial Scales.
    Scheidweiler D; De Anna P; Battin TJ; Peter H
    J Vis Exp; 2020 Nov; (165):. PubMed ID: 33311432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media.
    Thullner M; Baveye P
    Biotechnol Bioeng; 2008 Apr; 99(6):1337-51. PubMed ID: 18023059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile micromodel technology to explore biofilm development in porous media flows.
    Papadopoulos C; Larue AE; Toulouze C; Mokhtari O; Lefort J; Libert E; Assémat P; Swider P; Malaquin L; Davit Y
    Lab Chip; 2024 Jan; 24(2):254-271. PubMed ID: 38059908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A web of streamers: biofilm formation in a porous microfluidic device.
    Valiei A; Kumar A; Mukherjee PP; Liu Y; Thundat T
    Lab Chip; 2012 Dec; 12(24):5133-7. PubMed ID: 23123600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilms: Microbial Cities Wherein Flow Shapes Competition.
    Chew SC; Yang L
    Trends Microbiol; 2017 May; 25(5):331-332. PubMed ID: 28259384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms.
    Nadell CD; Bassler BL
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14181-5. PubMed ID: 21825170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.