These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31246972)

  • 21. Biofilms: Microbial Cities Wherein Flow Shapes Competition.
    Chew SC; Yang L
    Trends Microbiol; 2017 May; 25(5):331-332. PubMed ID: 28259384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A web of streamers: biofilm formation in a porous microfluidic device.
    Valiei A; Kumar A; Mukherjee PP; Liu Y; Thundat T
    Lab Chip; 2012 Dec; 12(24):5133-7. PubMed ID: 23123600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic Platform with Precisely Controlled Hydrodynamic Parameters and Integrated Features for Generation of Microvortices to Accurately Form and Monitor Biofilms in Flow.
    Wen K; Gorbushina AA; Schwibbert K; Bell J
    ACS Biomater Sci Eng; 2024 Jul; 10(7):4626-4634. PubMed ID: 38904279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms.
    Desmond P; Best JP; Morgenroth E; Derlon N
    Water Res; 2018 Apr; 132():211-221. PubMed ID: 29331909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms.
    Pavlovsky L; Sturtevant RA; Younger JG; Solomon MJ
    Langmuir; 2015 Feb; 31(6):2036-42. PubMed ID: 25602470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic study in a meter-long reactive path reveals how the medium's structural heterogeneity shapes MICP-induced biocementation.
    Elmaloglou A; Terzis D; De Anna P; Laloui L
    Sci Rep; 2022 Nov; 12(1):19553. PubMed ID: 36379990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms.
    Hou J; Veeregowda DH; van de Belt-Gritter B; Busscher HJ; van der Mei HC
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms.
    Kurz DL; Secchi E; Carrillo FJ; Bourg IC; Stocker R; Jimenez-Martinez J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122202119. PubMed ID: 35858419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMR measurement of hydrodynamic dispersion in porous media subject to biofilm mediated precipitation reactions.
    Fridjonsson EO; Seymour JD; Schultz LN; Gerlach R; Cunningham AB; Codd SL
    J Contam Hydrol; 2011 Mar; 120-121():79-88. PubMed ID: 20800317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of biofilms on the mobility of bare and capped zinc oxide nanoparticles in saturated sand and glass beads.
    Kurlanda-Witek H; Ngwenya BT; Butler IB
    J Contam Hydrol; 2015 Aug; 179():160-70. PubMed ID: 26140853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay of physical mechanisms and biofilm processes: review of microfluidic methods.
    Karimi A; Karig D; Kumar A; Ardekani AM
    Lab Chip; 2015 Jan; 15(1):23-42. PubMed ID: 25385289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of Escherichia coli in porous media.
    Liu Y; Li J
    Environ Sci Technol; 2008 Jan; 42(2):443-9. PubMed ID: 18284144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiscale Porosity Microfluidics to Study Bacterial Transport in Heterogeneous Chemical Landscapes.
    Salek MM; Carrara F; Zhou J; Stocker R; Jimenez-Martinez J
    Adv Sci (Weinh); 2024 May; 11(20):e2310121. PubMed ID: 38445967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupled CFD-DEM modeling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions.
    Xia Y; Jayathilake PG; Li B; Zuliani P; Deehan D; Longyear J; Stoodley P; Chen J
    Biotechnol Bioeng; 2022 Sep; 119(9):2551-2563. PubMed ID: 35610631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of flow hydrodynamics and pipe material properties on biofilm development within drinking water systems.
    Cowle MW; Webster G; Babatunde AO; Bockelmann-Evans BN; Weightman AJ
    Environ Technol; 2020 Dec; 41(28):3732-3744. PubMed ID: 31120377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow environment and matrix structure interact to determine spatial competition in
    Nadell CD; Ricaurte D; Yan J; Drescher K; Bassler BL
    Elife; 2017 Jan; 6():. PubMed ID: 28084994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system.
    Stoodley P; Dodds I; De Beer D; Scott HL; Boyle JD
    Biofouling; 2005; 21(3-4):161-8. PubMed ID: 16371336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofilm streamer growth dynamics in various microfluidic channels.
    Zhang J; Dong F; Liu S; Zhang D; Wang X
    Can J Microbiol; 2022 May; 68(5):367-375. PubMed ID: 35100043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions.
    Straub H; Eberl L; Zinn M; Rossi RM; Maniura-Weber K; Ren Q
    J Nanobiotechnology; 2020 Nov; 18(1):166. PubMed ID: 33176791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.