These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 31247388)
1. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area. Shen Q; Xia K; Zhang S; Kong C; Hu Q; Yang S Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117191. PubMed ID: 31247388 [TBL] [Abstract][Full Text] [Related]
2. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Zhang S; Shen Q; Nie C; Huang Y; Wang J; Hu Q; Ding X; Zhou Y; Chen Y Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():393-400. PubMed ID: 30594866 [TBL] [Abstract][Full Text] [Related]
3. Inversion of soil heavy metals in metal tailings area based on different spectral transformation and modeling methods. Yang N; Han L; Liu M Heliyon; 2023 Sep; 9(9):e19782. PubMed ID: 37809479 [TBL] [Abstract][Full Text] [Related]
4. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas. Hou L; Li X; Li F J Environ Qual; 2019 Jan; 48(1):57-63. PubMed ID: 30640357 [TBL] [Abstract][Full Text] [Related]
5. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Tan K; Ma W; Wu F; Du Q Environ Monit Assess; 2019 Jun; 191(7):446. PubMed ID: 31214787 [TBL] [Abstract][Full Text] [Related]
6. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy. Yousefi G; Homaee M; Norouzi AA Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407 [TBL] [Abstract][Full Text] [Related]
7. Inversion of heavy metal copper content in soil-wheat systems using hyperspectral techniques and enrichment characteristics. Zhong L; Yang S; Chu X; Sun Z; Li J Sci Total Environ; 2024 Jan; 907():168104. PubMed ID: 37884148 [TBL] [Abstract][Full Text] [Related]
8. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Zhang B; Guo B; Zou B; Wei W; Lei Y; Li T Environ Pollut; 2022 May; 300():118981. PubMed ID: 35150799 [TBL] [Abstract][Full Text] [Related]
9. Estimation of heavy metal concentrations in reclaimed mining soils using reflectance spectroscopy. Tan K; Ye YY; Du PJ; Zhang QQ Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3317-22. PubMed ID: 25881431 [TBL] [Abstract][Full Text] [Related]
10. Soil copper concentration map in mining area generated from AHSI remote sensing imagery. Sun W; Liu S; Wang M; Zhang X; Shang K; Liu Q Sci Total Environ; 2023 Feb; 860():160511. PubMed ID: 36442635 [TBL] [Abstract][Full Text] [Related]
11. Performance of hyperspectral data in predicting and mapping zinc concentration in soil. Sun W; Liu S; Zhang X; Zhu H Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742 [TBL] [Abstract][Full Text] [Related]
12. Estimate of soil heavy metal in a mining region using PCC-SVM-RFECV-AdaBoost combined with reflectance spectroscopy. Wang Y; Niu R; Lin G; Xiao Y; Ma H; Zhao L Environ Geochem Health; 2023 Dec; 45(12):9103-9121. PubMed ID: 36869963 [TBL] [Abstract][Full Text] [Related]
13. Estimation of Arsenic Content in Soil Based on Laboratory and Field Reflectance Spectroscopy. Wei L; Yuan Z; Yu M; Huang C; Cao L Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510072 [No Abstract] [Full Text] [Related]
14. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720 [TBL] [Abstract][Full Text] [Related]
15. [Research on hyperspectral inversion of soil salinity in typical semiarid area]. Li XM; Han JC; Li J Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Apr; 34(4):1081-4. PubMed ID: 25007633 [TBL] [Abstract][Full Text] [Related]
16. Estimating low concentration heavy metals in water through hyperspectral analysis and genetic algorithm-partial least squares regression. Lin Y; Gao J; Tu Y; Zhang Y; Gao J Sci Total Environ; 2024 Mar; 916():170225. PubMed ID: 38246365 [TBL] [Abstract][Full Text] [Related]
17. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale. Song YQ; Zhao X; Su HY; Li B; Hu YM; Cui XS Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217092 [TBL] [Abstract][Full Text] [Related]
18. Rapid Determination of Low Heavy Metal Concentrations in Grassland Soils around Mining Using Vis-NIR Spectroscopy: A Case Study of Inner Mongolia, China. Han A; Lu X; Qing S; Bao Y; Bao Y; Ma Q; Liu X; Zhang J Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34066493 [TBL] [Abstract][Full Text] [Related]
19. Estimation of the Fe and Cu Contents of the Surface Water in the Ebinur Lake Basin Based on LIBS and a Machine Learning Algorithm. Zhang X; Zhang F; Kung HT; Shi P; Yushanjiang A; Zhu S Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30373313 [TBL] [Abstract][Full Text] [Related]
20. Estimation of Heavy Metals in Tailings and Soils Using Hyperspectral Technology: A Case Study in a Tin-Polymetallic Mining Area. Bian Z; Sun L; Tian K; Liu B; Zhang X; Mao Z; Huang B; Wu L Bull Environ Contam Toxicol; 2021 Dec; 107(6):1022-1031. PubMed ID: 34241644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]