BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31247388)

  • 1. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area.
    Shen Q; Xia K; Zhang S; Kong C; Hu Q; Yang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117191. PubMed ID: 31247388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods.
    Zhang S; Shen Q; Nie C; Huang Y; Wang J; Hu Q; Ding X; Zhou Y; Chen Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():393-400. PubMed ID: 30594866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inversion of soil heavy metals in metal tailings area based on different spectral transformation and modeling methods.
    Yang N; Han L; Liu M
    Heliyon; 2023 Sep; 9(9):e19782. PubMed ID: 37809479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas.
    Hou L; Li X; Li F
    J Environ Qual; 2019 Jan; 48(1):57-63. PubMed ID: 30640357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data.
    Tan K; Ma W; Wu F; Du Q
    Environ Monit Assess; 2019 Jun; 191(7):446. PubMed ID: 31214787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy.
    Yousefi G; Homaee M; Norouzi AA
    Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inversion of heavy metal copper content in soil-wheat systems using hyperspectral techniques and enrichment characteristics.
    Zhong L; Yang S; Chu X; Sun Z; Li J
    Sci Total Environ; 2024 Jan; 907():168104. PubMed ID: 37884148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China.
    Zhang B; Guo B; Zou B; Wei W; Lei Y; Li T
    Environ Pollut; 2022 May; 300():118981. PubMed ID: 35150799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of heavy metal concentrations in reclaimed mining soils using reflectance spectroscopy.
    Tan K; Ye YY; Du PJ; Zhang QQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3317-22. PubMed ID: 25881431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil copper concentration map in mining area generated from AHSI remote sensing imagery.
    Sun W; Liu S; Wang M; Zhang X; Shang K; Liu Q
    Sci Total Environ; 2023 Feb; 860():160511. PubMed ID: 36442635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of hyperspectral data in predicting and mapping zinc concentration in soil.
    Sun W; Liu S; Zhang X; Zhu H
    Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimate of soil heavy metal in a mining region using PCC-SVM-RFECV-AdaBoost combined with reflectance spectroscopy.
    Wang Y; Niu R; Lin G; Xiao Y; Ma H; Zhao L
    Environ Geochem Health; 2023 Dec; 45(12):9103-9121. PubMed ID: 36869963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Arsenic Content in Soil Based on Laboratory and Field Reflectance Spectroscopy.
    Wei L; Yuan Z; Yu M; Huang C; Cao L
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510072
    [No Abstract]   [Full Text] [Related]  

  • 14. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest.
    Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y
    Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research on hyperspectral inversion of soil salinity in typical semiarid area].
    Li XM; Han JC; Li J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Apr; 34(4):1081-4. PubMed ID: 25007633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating low concentration heavy metals in water through hyperspectral analysis and genetic algorithm-partial least squares regression.
    Lin Y; Gao J; Tu Y; Zhang Y; Gao J
    Sci Total Environ; 2024 Mar; 916():170225. PubMed ID: 38246365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale.
    Song YQ; Zhao X; Su HY; Li B; Hu YM; Cui XS
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Determination of Low Heavy Metal Concentrations in Grassland Soils around Mining Using Vis-NIR Spectroscopy: A Case Study of Inner Mongolia, China.
    Han A; Lu X; Qing S; Bao Y; Bao Y; Ma Q; Liu X; Zhang J
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34066493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the Fe and Cu Contents of the Surface Water in the Ebinur Lake Basin Based on LIBS and a Machine Learning Algorithm.
    Zhang X; Zhang F; Kung HT; Shi P; Yushanjiang A; Zhu S
    Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30373313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Heavy Metals in Tailings and Soils Using Hyperspectral Technology: A Case Study in a Tin-Polymetallic Mining Area.
    Bian Z; Sun L; Tian K; Liu B; Zhang X; Mao Z; Huang B; Wu L
    Bull Environ Contam Toxicol; 2021 Dec; 107(6):1022-1031. PubMed ID: 34241644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.