These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 31247388)
41. [Spectral Response and Inversion Models for Prediction of Total Copper Content in Soil of Xifanping Mining Area]. Teng J; He ZW; Ni ZY; Zhao YQ; Zhang Z Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3637-42. PubMed ID: 30199175 [TBL] [Abstract][Full Text] [Related]
42. Moisture spectral characteristics and hyperspectral inversion of fly ash-filled reconstructed soil. Xia K; Xia S; Shen Q; Yang B; Song Q; Xu Y; Zhang S; Zhou X; Zhou Y Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119590. PubMed ID: 33647826 [TBL] [Abstract][Full Text] [Related]
43. [Study on the geochemical anomaly of copper element based on reflectance spectra]. Liu M; Lin QZ; Wang QJ; Li H Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1320-3. PubMed ID: 20672626 [TBL] [Abstract][Full Text] [Related]
44. The New Hyperspectral Analysis Method for Distinguishing the Types of Heavy Metal Copper and Lead Pollution Elements. Zhang J; Wang M; Yang K; Li Y; Li Y; Wu B; Han Q Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805414 [TBL] [Abstract][Full Text] [Related]
45. Inversion of Nitrogen Concentration in Apple Canopy Based on UAV Hyperspectral Images. Li W; Zhu X; Yu X; Li M; Tang X; Zhang J; Xue Y; Zhang C; Jiang Y Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591193 [TBL] [Abstract][Full Text] [Related]
46. Non-destructive Detection of Fatty Acid Content of Camellia Seed Based on Hyperspectral. Yang X; Jiang P; Luo Y; Shi Y J Oleo Sci; 2023 Jan; 72(1):69-77. PubMed ID: 36504187 [TBL] [Abstract][Full Text] [Related]
47. [Remote sensing inversion of surface soil organic matter at jointing stage of winter wheat based on unmanned aerial vehicle multispectral]. Wang X; Li YH; Wang RY; Shi FZ; Xu ST Ying Yong Sheng Tai Xue Bao; 2020 Jul; 31(7):2399-2406. PubMed ID: 32715706 [TBL] [Abstract][Full Text] [Related]
48. Hyperspectral characterization and chlorophyll content inversion of reclaimed vegetation in rare earth mines. Li H; Zhou B; Xu F; Wei Z Environ Sci Pollut Res Int; 2022 May; 29(24):36839-36853. PubMed ID: 35064880 [TBL] [Abstract][Full Text] [Related]
49. [Inversion of organic matter content of the north fluvo-aquic soil based on hyperspectral and multi-spectra]. Wang YC; Gu XH; Zhu JS; Long HL; Xu P; Liao QH Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):201-6. PubMed ID: 24783561 [TBL] [Abstract][Full Text] [Related]
50. Retrieving zinc concentrations in topsoil with reflectance spectroscopy at Opencast Coal Mine sites. Guo B; Zhang B; Su Y; Zhang D; Wang Y; Bian Y; Suo L; Guo X; Bai H Sci Rep; 2021 Oct; 11(1):19909. PubMed ID: 34620914 [TBL] [Abstract][Full Text] [Related]
51. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648 [TBL] [Abstract][Full Text] [Related]
52. Multisource spectral-integrated estimation of cadmium concentrations in soil using a direct standardization and Spiking algorithm. Zou B; Jiang X; Feng H; Tu Y; Tao C Sci Total Environ; 2020 Jan; 701():134890. PubMed ID: 31726405 [TBL] [Abstract][Full Text] [Related]
53. Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom. Lamine S; Petropoulos GP; Brewer PA; Bachari NE; Srivastava PK; Manevski K; Kalaitzidis C; Macklin MG Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781812 [TBL] [Abstract][Full Text] [Related]
54. [Retrieval of Copper Pollution Information from Hyperspectral Satellite Data in a Vegetation Cover Mining Area]. Qu YH; Jiao SH; Liu SH; Zhu YQ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3176-81. PubMed ID: 26978931 [TBL] [Abstract][Full Text] [Related]
55. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy. Wang C; Li W; Guo M; Ji J Sci Rep; 2017 Feb; 7():40709. PubMed ID: 28198802 [TBL] [Abstract][Full Text] [Related]
56. [Hyperspectral prediction model of soil nutrient content in the loess hilly-gully region, China.]. Zhang C; Liu YM; Sun YN; Wang L; Liu JH Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):2835-2842. PubMed ID: 30411558 [TBL] [Abstract][Full Text] [Related]
57. Estimation of soil copper content based on fractional-order derivative spectroscopy and spectral characteristic band selection. Cui S; Zhou K; Ding R; Cheng Y; Jiang G Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121190. PubMed ID: 35364408 [TBL] [Abstract][Full Text] [Related]
58. Rapid detection of cadmium and its distribution in Miscanthus sacchariflorus based on visible and near-infrared hyperspectral imaging. Feng X; Chen H; Chen Y; Zhang C; Liu X; Weng H; Xiao S; Nie P; He Y Sci Total Environ; 2019 Apr; 659():1021-1031. PubMed ID: 31096318 [TBL] [Abstract][Full Text] [Related]
59. Spectral Analysis and Sensitive Waveband Determination Based on Nitrogen Detection of Different Soil Types Using Near Infrared Sensors. Xiao S; He Y; Dong T; Nie P Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29425139 [TBL] [Abstract][Full Text] [Related]
60. [Estimating total nitrogen content in reclaimed water based on hyperspectral reflectance information from emergent plants: a case study of Mencheng Lake Wetland Park in Beijing, China]. Liu H; Gong ZN; Zhao WJ Ying Yong Sheng Tai Xue Bao; 2014 Dec; 25(12):3609-18. PubMed ID: 25876415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]