These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31247392)

  • 1. Optimization of plant hormonal balance by microorganisms prevents plant heavy metal accumulation.
    Ravanbakhsh M; Kowalchuk GA; Jousset A
    J Hazard Mater; 2019 Nov; 379():120787. PubMed ID: 31247392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane oxidation needs less stressed plants.
    Zhou X; Smaill SJ; Clinton PW
    Trends Plant Sci; 2013 Dec; 18(12):657-9. PubMed ID: 24161402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the ability of Pseudomonas fluorescens UW4 to reduce cadmium stress in Lactuca sativa via an intervention in the ethylene biosynthetic pathway.
    Albano LJ; Macfie SM
    Can J Microbiol; 2016 Dec; 62(12):1057-1062. PubMed ID: 27759425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant.
    Belimov AA; Safronova VI; Mimura T
    Can J Microbiol; 2002 Mar; 48(3):189-99. PubMed ID: 11989762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake.
    Li X; Yan Z; Gu D; Li D; Tao Y; Zhang D; Su L; Ao Y
    J Basic Microbiol; 2019 Jun; 59(6):579-590. PubMed ID: 30980735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bacterial ACC deaminase on Brassica napus gene expression.
    Stearns JC; Woody OZ; McConkey BJ; Glick BR
    Mol Plant Microbe Interact; 2012 May; 25(5):668-76. PubMed ID: 22352713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway.
    Chen L; Dodd IC; Theobald JC; Belimov AA; Davies WJ
    J Exp Bot; 2013 Apr; 64(6):1565-73. PubMed ID: 23404897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making phytoremediation work better: maximizing a plant's growth potential in the midst of adversity.
    Glick BR; Stearns JC
    Int J Phytoremediation; 2011; 13 Suppl 1():4-16. PubMed ID: 22046748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress.
    Mitra S; Pramanik K; Ghosh PK; Soren T; Sarkar A; Dey RS; Pandey S; Maiti TK
    Microbiol Res; 2018 May; 210():12-25. PubMed ID: 29625654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils.
    Chang P; Gerhardt KE; Huang XD; Yu XM; Glick BR; Gerwing PD; Greenberg BM
    Int J Phytoremediation; 2014; 16(7-12):1133-47. PubMed ID: 24933907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root-associated microorganisms reprogram plant life history along the growth-stress resistance tradeoff.
    Ravanbakhsh M; Kowalchuk GA; Jousset A
    ISME J; 2019 Dec; 13(12):3093-3101. PubMed ID: 31511619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethylene promotes cadmium-induced root growth inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis.
    Kong X; Li C; Zhang F; Yu Q; Gao S; Zhang M; Tian H; Zhang J; Yuan X; Ding Z
    Plant Cell Environ; 2018 Oct; 41(10):2449-2462. PubMed ID: 29869796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase.
    Glick BR
    FEMS Microbiol Lett; 2005 Oct; 251(1):1-7. PubMed ID: 16099604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis.
    Zhang L; Ding H; Jiang H; Wang H; Chen K; Duan J; Feng S; Wu G
    Chemosphere; 2020 Mar; 242():125168. PubMed ID: 31678850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals.
    Wu CH; Wood TK; Mulchandani A; Chen W
    Appl Environ Microbiol; 2006 Feb; 72(2):1129-34. PubMed ID: 16461658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial Modulation of Plant Ethylene Levels.
    Gamalero E; Glick BR
    Plant Physiol; 2015 Sep; 169(1):13-22. PubMed ID: 25897004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils.
    Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L
    J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1-Aminocyclopropane-1-Carboxylate: A Novel and Strong Chemoattractant for the Plant Beneficial Rhizobacterium
    Li T; Zhang J; Shen C; Li H; Qiu L
    Mol Plant Microbe Interact; 2019 Jun; 32(6):750-759. PubMed ID: 30640574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.).
    Treesubsuntorn C; Dhurakit P; Khaksar G; Thiravetyan P
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25690-25701. PubMed ID: 28480489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abutilon indicum L.: a prospective weed for phytoremediation.
    Varun M; Jaggi D; D'Souza R; Paul MS; Kumar B
    Environ Monit Assess; 2015 Aug; 187(8):527. PubMed ID: 26215827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.