BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31247428)

  • 21. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa).
    Wang Y; Wang J; Guo D; Zhang H; Che Y; Li Y; Tian B; Wang Z; Sun G; Zhang H
    Plant Physiol Biochem; 2021 Oct; 167():140-152. PubMed ID: 34352517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome-IPMS analysis reveals a tissue-dependent miR156/SPL13 regulatory mechanism in alfalfa drought tolerance.
    Feyissa BA; Renaud J; Nasrollahi V; Kohalmi SE; Hannoufa A
    BMC Genomics; 2020 Oct; 21(1):721. PubMed ID: 33076837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomic analysis of differentially expressed genes in leaves and roots of two alfalfa (Medicago sativa L.) cultivars with different salt tolerance.
    Bhattarai S; Fu YB; Coulman B; Tanino K; Karunakaran C; Biligetu B
    BMC Plant Biol; 2021 Oct; 21(1):446. PubMed ID: 34610811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms.
    Lei Y; Xu Y; Hettenhausen C; Lu C; Shen G; Zhang C; Li J; Song J; Lin H; Wu J
    BMC Plant Biol; 2018 Feb; 18(1):35. PubMed ID: 29448940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco.
    Zhang Z; Wang Y; Chang L; Zhang T; An J; Liu Y; Cao Y; Zhao X; Sha X; Hu T; Yang P
    Plant Cell Rep; 2016 Feb; 35(2):439-53. PubMed ID: 26573680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).
    Zhang J; Duan Z; Zhang D; Zhang J; Di H; Wu F; Wang Y
    Biochem Biophys Res Commun; 2016 Mar; 472(1):75-82. PubMed ID: 26906624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings.
    Zhang X; Lei L; Lai J; Zhao H; Song W
    BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the Role of
    Hanly A; Karagiannis J; Lu QSM; Tian L; Hannoufa A
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.).
    Tang L; Cai H; Ji W; Luo X; Wang Z; Wu J; Wang X; Cui L; Wang Y; Zhu Y; Bai X
    Plant Physiol Biochem; 2013 Oct; 71():22-30. PubMed ID: 23867600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Proteomic Analysis Reveals That Antioxidant System and Soluble Sugar Metabolism Contribute to Salt Tolerance in Alfalfa ( Medicago sativa L.) Leaves.
    Gao Y; Long R; Kang J; Wang Z; Zhang T; Sun H; Li X; Yang Q
    J Proteome Res; 2019 Jan; 18(1):191-203. PubMed ID: 30359026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-Wide Analysis and Profile of UDP-Glycosyltransferases Family in Alfalfa (
    Ao B; Han Y; Wang S; Wu F; Zhang J
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa.
    Ma J; Qiu D; Gao H; Wen H; Wu Y; Pang Y; Wang X; Qin Y
    BMC Plant Biol; 2020 May; 20(1):226. PubMed ID: 32429844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13.
    Arshad M; Feyissa BA; Amyot L; Aung B; Hannoufa A
    Plant Sci; 2017 May; 258():122-136. PubMed ID: 28330556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in phenotype and gene expression under lead stress revealed key genetic responses to lead tolerance in Medicago sativa L.
    Wang Y; Meng Y; Mu S; Yan D; Xu X; Zhang L; Xu B
    Gene; 2021 Jul; 791():145714. PubMed ID: 33979680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.).
    Aranjuelo I; Molero G; Erice G; Avice JC; Nogués S
    J Exp Bot; 2011 Jan; 62(1):111-23. PubMed ID: 20797998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differentially expressed genes related to plant height and yield in two alfalfa cultivars based on RNA-seq.
    Qi J; Yu X; Wang X; Zhang F; Ma C
    PeerJ; 2022; 10():e14096. PubMed ID: 36248707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leaf transcriptome analysis of Medicago ruthenica revealed its response and adaptive strategy to drought and drought recovery.
    Wu R; Xu B; Shi F
    BMC Plant Biol; 2022 Dec; 22(1):562. PubMed ID: 36460952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses.
    Behr M; Legay S; Hausman JF; Guerriero G
    Int J Mol Sci; 2015 Jul; 16(7):16104-24. PubMed ID: 26193255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome analysis reveals regulatory mechanisms of different drought-tolerant Gleditsia sinensis seedlings under drought stress.
    Liu F; Zhao Y; Wang X; Wang B; Xiao F; He K
    BMC Genom Data; 2024 Mar; 25(1):29. PubMed ID: 38481144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.