These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 31247502)
1. Microfluidic preparation of polymer-lipid Janus microparticles with staged drug release property. Sun XT; Guo R; Wang DN; Wei YY; Yang CG; Xu ZR J Colloid Interface Sci; 2019 Oct; 553():631-638. PubMed ID: 31247502 [TBL] [Abstract][Full Text] [Related]
2. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices. Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic Preparation of Janus Microparticles With Temperature and pH Triggered Degradation Properties. Feng ZY; Liu TT; Sang ZT; Lin ZS; Su X; Sun XT; Yang HZ; Wang T; Guo S Front Bioeng Biotechnol; 2021; 9():756758. PubMed ID: 34568306 [TBL] [Abstract][Full Text] [Related]
4. Combination of microfluidic chip and electrostatic atomization for the preparation of drug-loaded core-shell nanoparticles. Zeng W; Guo P; Jiang P; Liu W; Hong T; Chen C Nanotechnology; 2020 Apr; 31(14):145301. PubMed ID: 31841998 [TBL] [Abstract][Full Text] [Related]
5. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling. Busatto C; Pesoa J; Helbling I; Luna J; Estenoz D Int J Pharm; 2018 Jan; 536(1):360-369. PubMed ID: 29217474 [TBL] [Abstract][Full Text] [Related]
6. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Kranz H; Bodmeier R Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049 [TBL] [Abstract][Full Text] [Related]
7. Microfluidics for the Production of Nanomedicines: Considerations for Polymer and Lipid-based Systems. Streck S; Hong L; Boyd BJ; McDowell A Pharm Nanotechnol; 2019; 7(6):423-443. PubMed ID: 31629401 [TBL] [Abstract][Full Text] [Related]
8. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles. Keohane K; Brennan D; Galvin P; Griffin BT Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950 [TBL] [Abstract][Full Text] [Related]
9. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations. Vladisavljević GT; Shahmohamadi H; Das DB; Ekanem EE; Tauanov Z; Sharma L J Colloid Interface Sci; 2014 Mar; 418():163-70. PubMed ID: 24461831 [TBL] [Abstract][Full Text] [Related]
10. Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery. Vasiliauskas R; Liu D; Cito S; Zhang H; Shahbazi MA; Sikanen T; Mazutis L; Santos HA ACS Appl Mater Interfaces; 2015 Jul; 7(27):14822-32. PubMed ID: 26098382 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method. Matsumoto A; Murao S; Matsumoto M; Watanabe C; Murakami M Drug Discov Ther; 2016; 10(6):307-313. PubMed ID: 28090069 [TBL] [Abstract][Full Text] [Related]
12. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Hadinoto K; Sundaresan A; Cheow WS Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180 [TBL] [Abstract][Full Text] [Related]
13. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Cheow WS; Hadinoto K Colloids Surf B Biointerfaces; 2011 Jul; 85(2):214-20. PubMed ID: 21439797 [TBL] [Abstract][Full Text] [Related]
14. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques. Wang H; Zhang G; Ma X; Liu Y; Feng J; Park K; Wang W Eur J Pharm Biopharm; 2017 Jun; 115():177-185. PubMed ID: 28263795 [TBL] [Abstract][Full Text] [Related]
15. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Li X; Jiang X Adv Drug Deliv Rev; 2018 Mar; 128():101-114. PubMed ID: 29277543 [TBL] [Abstract][Full Text] [Related]
16. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption. Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042 [TBL] [Abstract][Full Text] [Related]
18. Biodegradable Polymer Microparticles with Tunable Shapes and Surface Textures for Enhancement of Dendritic Cell Maturation. Hussain M; Xie J; Wang K; Wang H; Tan Z; Liu Q; Geng Z; Shezad K; Noureen L; Jiang H; Xu J; Zhang L; Zhu J ACS Appl Mater Interfaces; 2019 Nov; 11(45):42734-42743. PubMed ID: 31622077 [TBL] [Abstract][Full Text] [Related]
19. On-chip polyelectrolyte coating onto magnetic droplets - towards continuous flow assembly of drug delivery capsules. Alorabi AQ; Tarn MD; Gómez-Pastora J; Bringas E; Ortiz I; Paunov VN; Pamme N Lab Chip; 2017 Nov; 17(22):3785-3795. PubMed ID: 28991297 [TBL] [Abstract][Full Text] [Related]
20. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]