BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31247532)

  • 1. Microbial fuel cell performance of graphitic carbon functionalized porous polysiloxane based ceramic membranes.
    Ahilan V; de Barros CC; Bhowmick GD; Ghangrekar MM; Murshed MM; Wilhelm M; Rezwan K
    Bioelectrochemistry; 2019 Oct; 129():259-269. PubMed ID: 31247532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.
    Winfield J; Chambers LD; Rossiter J; Ieropoulos I
    Bioresour Technol; 2013 Nov; 148():480-6. PubMed ID: 24077158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton exchange membrane based on graphene oxide/polysulfone hybrid nano-composite for simultaneous generation of electricity and wastewater treatment.
    Ali AKM; Ali MEA; Younes AA; Abo El Fadl MM; Farag AB
    J Hazard Mater; 2021 Oct; 419():126420. PubMed ID: 34166952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells.
    Pasternak G; Greenman J; Ieropoulos I
    ChemSusChem; 2016 Jan; 9(1):88-96. PubMed ID: 26692569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells.
    Kim JR; Cheng S; Oh SE; Logan BE
    Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of ceramic MFC stacks for urine energy extraction.
    Tremouli A; Greenman J; Ieropoulos I
    Bioelectrochemistry; 2018 Oct; 123():19-25. PubMed ID: 29719273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Durum wheat semolina-modified ceramic membranes as novel porous separators for enhanced power generation and wastewater remediation using microbial fuel cell.
    Patel BR; Noroozifar M; Mohebbi-Kalhori D; Kerman K
    Bioresour Technol; 2022 Oct; 361():127752. PubMed ID: 35940322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent load implementation in microbial fuel cells improves power performance.
    Walter XA; Greenman J; Ieropoulos IA
    Bioresour Technol; 2014 Nov; 172():365-372. PubMed ID: 25280044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and application of novel fly ash blended ceramic membrane in MFC for low-cost and sustainable wastewater treatment and power generation.
    Rao A; Kaushik A; Kuppurangan G; Selvaraj G
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):45872-45887. PubMed ID: 36707477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical impedance spectroscopy (EIS) reveals the role of microbial fuel cell-ceramic membrane bioreactor (MFC-CMBR): Electricity utilization and membrane fouling.
    Wang L; Wu Y; You Z; Bao H; Zhang L; Wang J
    Water Res; 2022 Aug; 222():118854. PubMed ID: 35853333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications.
    Kumar GG; Hashmi S; Karthikeyan C; GhavamiNejad A; Vatankhah-Varnoosfaderani M; Stadler FJ
    Macromol Rapid Commun; 2014 Nov; 35(21):1861-5. PubMed ID: 25228415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells.
    Zhao Y; Watanabe K; Hashimoto K
    Phys Chem Chem Phys; 2011 Sep; 13(33):15016-21. PubMed ID: 21785787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes.
    Koók L; Nemestóthy N; Bakonyi P; Zhen G; Kumar G; Lu X; Su L; Saratale GD; Kim SH; Gubicza L
    Chemosphere; 2017 May; 175():350-355. PubMed ID: 28235744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold.
    Chou HT; Lee HJ; Lee CY; Tai NH; Chang HY
    Bioresour Technol; 2014 Oct; 169():532-536. PubMed ID: 25089894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell.
    Xu H; Wang L; Wen Q; Chen Y; Qi L; Huang J; Tang Z
    Bioelectrochemistry; 2019 Oct; 129():144-153. PubMed ID: 31158799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waste to real energy: the first MFC powered mobile phone.
    Ieropoulos IA; Ledezma P; Stinchcombe A; Papaharalabos G; Melhuish C; Greenman J
    Phys Chem Chem Phys; 2013 Oct; 15(37):15312-6. PubMed ID: 23939246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review into the use of ceramics in microbial fuel cells.
    Winfield J; Gajda I; Greenman J; Ieropoulos I
    Bioresour Technol; 2016 Sep; 215():296-303. PubMed ID: 27130228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs.
    Hou J; Liu Z; Li Y; Yang S; Zhou Y
    Bioprocess Biosyst Eng; 2015 May; 38(5):881-8. PubMed ID: 25428842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.