These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31247547)
1. Automated Deformation-Based Analysis of 3D Optical Coherence Tomography in Diabetic Retinopathy. Khansari MM; Zhang J; Qiao Y; Gahm JK; Sarabi MS; Kashani AH; Shi Y IEEE Trans Med Imaging; 2020 Jan; 39(1):236-245. PubMed ID: 31247547 [TBL] [Abstract][Full Text] [Related]
2. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. ElTanboly A; Ismail M; Shalaby A; Switala A; El-Baz A; Schaal S; Gimel'farb G; El-Azab M Med Phys; 2017 Mar; 44(3):914-923. PubMed ID: 28035657 [TBL] [Abstract][Full Text] [Related]
3. 3D Retinal Vessel Density Mapping With OCT-Angiography. Sarabi MS; Khansari MM; Zhang J; Kushner-Lenhoff S; Gahm JK; Qiao Y; Kashani AH; Shi Y IEEE J Biomed Health Inform; 2020 Dec; 24(12):3466-3479. PubMed ID: 32986562 [TBL] [Abstract][Full Text] [Related]
4. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images. Lee S; Lebed E; Sarunic MV; Beg MF IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906 [TBL] [Abstract][Full Text] [Related]
5. Detection of Diabetic Retinopathy Using Extracted 3D Features from OCT Images. Elgafi M; Sharafeldeen A; Elnakib A; Elgarayhi A; Alghamdi NS; Sallah M; El-Baz A Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298186 [TBL] [Abstract][Full Text] [Related]
6. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Virgili G; Menchini F; Murro V; Peluso E; Rosa F; Casazza G Cochrane Database Syst Rev; 2011 Jul; (7):CD008081. PubMed ID: 21735421 [TBL] [Abstract][Full Text] [Related]
7. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
8. Automated choroid segmentation of three-dimensional SD-OCT images by incorporating EDI-OCT images. Chen Q; Niu S; Fang W; Shuai Y; Fan W; Yuan S; Liu Q Comput Methods Programs Biomed; 2018 May; 158():161-171. PubMed ID: 29544782 [TBL] [Abstract][Full Text] [Related]
9. Automatic Anisotropic Diffusion Filtering and Graph-search Segmentation of Macular Spectral-domain Optical Coherence Tomographic (SD-OCT) Images. Usha A; Shajil N; Sasikala M Curr Med Imaging Rev; 2019; 15(3):308-318. PubMed ID: 31989882 [TBL] [Abstract][Full Text] [Related]
10. OCT Hyperreflective Retinal Foci in Diabetic Retinopathy: A Semi-Automatic Detection Comparative Study. Midena E; Torresin T; Velotta E; Pilotto E; Parrozzani R; Frizziero L Front Immunol; 2021; 12():613051. PubMed ID: 33968016 [TBL] [Abstract][Full Text] [Related]
11. Fast and Automated Hyperreflective Foci Segmentation Based on Image Enhancement and Improved 3D U-Net in SD-OCT Volumes with Diabetic Retinopathy. Xie S; Okuwobi IP; Li M; Zhang Y; Yuan S; Chen Q Transl Vis Sci Technol; 2020 Apr; 9(2):21. PubMed ID: 32818082 [TBL] [Abstract][Full Text] [Related]
12. [Visual Analysis of Retinal OCT Data]. Röhlig M; Jünemann A; Fischer DC; Prakasam RK; Stachs O; Schumann H Klin Monbl Augenheilkd; 2017 Dec; 234(12):1463-1471. PubMed ID: 29145690 [TBL] [Abstract][Full Text] [Related]
13. A new retinal OCT-angiography diabetic retinopathy dataset for segmentation and DR grading. Ma F; Wang S; Dai C; Qi F; Meng J J Biophotonics; 2023 Nov; 16(11):e202300052. PubMed ID: 37421596 [TBL] [Abstract][Full Text] [Related]
14. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Carnevali A; Sacconi R; Corbelli E; Tomasso L; Querques L; Zerbini G; Scorcia V; Bandello F; Querques G Acta Diabetol; 2017 Jul; 54(7):695-702. PubMed ID: 28474119 [TBL] [Abstract][Full Text] [Related]
15. Ratiometric analysis of optical coherence tomography-measured in vivo retinal layer thicknesses for the detection of early diabetic retinopathy. Bhaduri B; Shelton RL; Nolan RM; Hendren L; Almasov A; Labriola LT; Boppart SA J Biophotonics; 2017 Nov; 10(11):1430-1441. PubMed ID: 28635102 [TBL] [Abstract][Full Text] [Related]
16. Deep learning based retinal OCT segmentation. Pekala M; Joshi N; Liu TYA; Bressler NM; DeBuc DC; Burlina P Comput Biol Med; 2019 Nov; 114():103445. PubMed ID: 31561100 [TBL] [Abstract][Full Text] [Related]
18. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms. Rashno A; Koozekanani DD; Drayna PM; Nazari B; Sadri S; Rabbani H; Parhi KK IEEE Trans Biomed Eng; 2018 May; 65(5):989-1001. PubMed ID: 28783619 [TBL] [Abstract][Full Text] [Related]
19. Optical coherence tomography for complete management of patients with diabetic retinopathy. Oshitari T; Mitamura Y Curr Diabetes Rev; 2010 Jul; 6(4):207-14. PubMed ID: 20522019 [TBL] [Abstract][Full Text] [Related]
20. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images. Sun Z; Sun Y J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]