These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 31247548)
1. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach. Wear KA; Howard SM IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1453-1464. PubMed ID: 31247548 [TBL] [Abstract][Full Text] [Related]
2. Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources. Wear KA; Shah A; Baker C IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2674-2691. PubMed ID: 32746206 [TBL] [Abstract][Full Text] [Related]
3. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part II: Experimental Validation of Spatial Averaging Model. Wear KA; Liu Y IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):340-347. PubMed ID: 30530327 [TBL] [Abstract][Full Text] [Related]
4. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part I: Spatiotemporal Transfer Function and Graphical Guide. Wear KA IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):318-339. PubMed ID: 30530326 [TBL] [Abstract][Full Text] [Related]
5. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution. Liu Y; Wear KA; Harris GR Ultrasound Med Biol; 2017 Oct; 43(10):2329-2342. PubMed ID: 28735734 [TBL] [Abstract][Full Text] [Related]
6. Hydrophone Spatial Averaging Artifacts for ARFI Beams from Array Transducers. Wear K; Shah A; Ivory AM; Baker C IEEE Int Ultrason Symp; 2020; NA():1-4. PubMed ID: 35733623 [TBL] [Abstract][Full Text] [Related]
7. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I: Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size. Wear KA IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1243-1256. PubMed ID: 35133964 [TBL] [Abstract][Full Text] [Related]
8. Correction for Spatial Averaging Artifacts for Circularly-Symmetric Pressure Beams Measured with Membrane Hydrophones. Wear K; Shah A; Baker C IEEE Int Ultrason Symp; 2020; NA():1-4. PubMed ID: 35765664 [TBL] [Abstract][Full Text] [Related]
9. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes. Wear KA IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):358-375. PubMed ID: 33186102 [TBL] [Abstract][Full Text] [Related]
10. Nominal Versus Actual Spatial Resolution: Comparison of Directivity and Frequency-Dependent Effective Sensitive Element Size for Membrane, Needle, Capsule, and Fiber-Optic Hydrophones. Wear KA; Shah A IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):112-119. PubMed ID: 36178990 [TBL] [Abstract][Full Text] [Related]
11. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part II: Experimental Validation. Wear KA; Shah A; Baker C IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1257-1267. PubMed ID: 35143394 [TBL] [Abstract][Full Text] [Related]
12. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part II: Validation for ARFI and Pulsed Doppler Waveforms. Wear KA; Shah A; Ivory AM; Baker C IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):376-388. PubMed ID: 33186103 [TBL] [Abstract][Full Text] [Related]
13. Correction for frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: application with fiber optic hydrophones. Wear K; Liu Y; Gammell PM; Maruvada S; Harris GR IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):152-64. PubMed ID: 25585399 [TBL] [Abstract][Full Text] [Related]
14. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity. Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896 [TBL] [Abstract][Full Text] [Related]
15. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. Zhou Y; Zhai L; Simmons R; Zhong P J Acoust Soc Am; 2006 Aug; 120(2):676-85. PubMed ID: 16938956 [TBL] [Abstract][Full Text] [Related]
16. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths. Radulescu EG; Lewin PA; Wójcik J; Nowicki A IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510 [TBL] [Abstract][Full Text] [Related]
17. Directivity and Frequency-Dependent Effective Sensitive Element Size of Membrane Hydrophones: Theory Versus Experiment. Wear KA; Baker C; Miloro P IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Nov; 66(11):1723-1730. PubMed ID: 31352340 [TBL] [Abstract][Full Text] [Related]
18. Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields. Huttunen T; Kaipio JP; Hynynen K IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1486-500. PubMed ID: 14682632 [TBL] [Abstract][Full Text] [Related]
19. Experimental characterization of fundamental and second harmonic beams for a high-frequency ultrasound transducer. Cherin EW; Poulsen JK; van der Steen AF; Lum P; Foster FS Ultrasound Med Biol; 2002 May; 28(5):635-46. PubMed ID: 12079700 [TBL] [Abstract][Full Text] [Related]
20. Pressure Pulse Distortion by Needle and Fiber-Optic Hydrophones due to Nonuniform Sensitivity. Wear KA; Liu Y; Harris GR IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Feb; 65(2):137-148. PubMed ID: 29389648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]