These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31247608)

  • 1. Superconducting properties of tungsten nanowires fabricated using focussed ion beam technique.
    Aloysius RP; Husale S; Kumar A; Ahmad F; Gangwar AK; Papanai GS; Gupta A
    Nanotechnology; 2019 Oct; 30(40):405001. PubMed ID: 31247608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current-voltage characteristics of focused ion beam fabricated superconducting tungsten meanders.
    Kumar A; Husale S; Saravanan MP; Gajar B; Yousuf M; Saini A; Yadav MG; Aloysius RP
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37793353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.
    Constantino NGN; Anwar MS; Kennedy OW; Dang M; Warburton PA; Fenton JC
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29914174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.
    Makise K; Terai H; Tominari Y; Tanaka S; Shinozaki B
    Sci Rep; 2016 Jun; 6():27001. PubMed ID: 27311595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconductor-insulator transition in quasi-one-dimensional single-crystal Nb₂PdS₅ nanowires.
    Ning W; Yu H; Liu Y; Han Y; Wang N; Yang J; Du H; Zhang C; Mao Z; Liu Y; Tian M; Zhang Y
    Nano Lett; 2015 Feb; 15(2):869-75. PubMed ID: 25575045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting transition in Nb nanowires fabricated using focused ion beam.
    Tettamanzi GC; Pakes CI; Potenza A; Rubanov S; Marrows CH; Prawer S
    Nanotechnology; 2009 Nov; 20(46):465302. PubMed ID: 19843991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Phase Slips in 6 mm Long Niobium Nanowire.
    Zhao W; Liu X; Chan MH
    Nano Lett; 2016 Feb; 16(2):1173-8. PubMed ID: 26788964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superconductor-insulator transition in long MoGe nanowires.
    Kim H; Jamali S; Rogachev A
    Phys Rev Lett; 2012 Jul; 109(2):027002. PubMed ID: 23030196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowire bolometer using a 2D high-temperature superconductor.
    Ghosh S; Jangade DA; Deshmukh MM
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36179585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum phase slips in superconducting nanowires.
    Lau CN; Markovic N; Bockrath M; Bezryadin A; Tinkham M
    Phys Rev Lett; 2001 Nov; 87(21):217003. PubMed ID: 11736371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration.
    Baumans XD; Cerbu D; Adami OA; Zharinov VS; Verellen N; Papari G; Scheerder JE; Zhang G; Moshchalkov VV; Silhanek AV; Van de Vondel J
    Nat Commun; 2016 Feb; 7():10560. PubMed ID: 26879257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.
    Lehtinen JS; Zakharov K; Arutyunov KY
    Phys Rev Lett; 2012 Nov; 109(18):187001. PubMed ID: 23215316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum suppression of superconductivity in ultrathin nanowires.
    Bezryadin A; Lau CN; Tinkham M
    Nature; 2000 Apr; 404(6781):971-4. PubMed ID: 10801120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires.
    Orús P; Fomin VM; De Teresa JM; Córdoba R
    Sci Rep; 2021 Sep; 11(1):17698. PubMed ID: 34489493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystalline Niobium Carbide Superconducting Nanowires Prepared by Focused Ion Beam Direct Writing.
    Porrati F; Barth S; Sachser R; Dobrovolskiy OV; Seybert A; Frangakis AS; Huth M
    ACS Nano; 2019 Jun; 13(6):6287-6296. PubMed ID: 31046238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconductor-insulator transition in capacitively coupled superconducting nanowires.
    Latyshev A; Semenov AG; Zaikin AD
    Beilstein J Nanotechnol; 2020; 11():1402-1408. PubMed ID: 33014680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconducting properties of in-plane W-C nanowires grown by He
    Orús P; Córdoba R; Hlawacek G; De Teresa JM
    Nanotechnology; 2021 Feb; 32(8):085301. PubMed ID: 33171446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eliminating Quantum Phase Slips in Superconducting Nanowires.
    Voss JN; Schön Y; Wildermuth M; Dorer D; Cole JH; Rotzinger H; Ustinov AV
    ACS Nano; 2021 Mar; 15(3):4108-4114. PubMed ID: 33596045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current-phase relationship, thermal and quantum phase slips in superconducting nanowires made on a scaffold created using adhesive tape.
    Bae MH; Dinsmore RC; Aref T; Brenner M; Bezryadin A
    Nano Lett; 2009 May; 9(5):1889-96. PubMed ID: 19344118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave spectroscopy evidence of superconducting pairing in the magnetic-field-induced metallic state of InO(x) films at zero temperature.
    Liu W; Pan L; Wen J; Kim M; Sambandamurthy G; Armitage NP
    Phys Rev Lett; 2013 Aug; 111(6):067003. PubMed ID: 23971604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.