BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3124762)

  • 21. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The reduction of acetylpyridine adenine dinucleotide by NADH: is it a significant reaction of proton-translocating transhydrogenase, or an artefact?
    Stilwell SN; Bizouarn T; Jackson JB
    Biochim Biophys Acta; 1997 May; 1320(1):83-94. PubMed ID: 9186780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peroxidase-catalyzed N-demethylation reactions. Substrate deuterium isotope effects.
    Kedderis GL; Hollenberg PF
    J Biol Chem; 1984 Mar; 259(6):3663-8. PubMed ID: 6538566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate and solvent isotope effects on the fate of the active oxygen species in substrate-modulated reactions of putidamonooxin.
    Twilfer H; Sandfort G; Bernhardt FH
    Eur J Biochem; 2000 Oct; 267(19):5926-34. PubMed ID: 10998052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The streptococcal flavoprotein NADH oxidase. I. Evidence linking NADH oxidase and NADH peroxidase cysteinyl redox centers.
    Ahmed SA; Claiborne A
    J Biol Chem; 1989 Nov; 264(33):19856-63. PubMed ID: 2511195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic mechanism of human inosine 5'-monophosphate dehydrogenase type II: random addition of substrates and ordered release of products.
    Wang W; Hedstrom L
    Biochemistry; 1997 Jul; 36(28):8479-83. PubMed ID: 9214292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of primary deuterium and 15N isotope effects to deduce the relative rates of steps in the mechanisms of alanine and glutamate dehydrogenases.
    Weiss PM; Chen CY; Cleland WW; Cook PF
    Biochemistry; 1988 Jun; 27(13):4814-22. PubMed ID: 3139028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transhydrogenation reactions catalyzed by mitochondrial NADH-ubiquinone oxidoreductase (Complex I).
    Yakovlev G; Hirst J
    Biochemistry; 2007 Dec; 46(49):14250-8. PubMed ID: 18001142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic and mechanistic properties of biotin sulfoxide reductase.
    Pollock VV; Barber MJ
    Biochemistry; 2001 Feb; 40(5):1430-40. PubMed ID: 11170471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Primary deuterium and tritium isotope effects upon V/K in the liver alcohol dehydrogenase reaction with ethanol.
    Damgaard SE
    Biochemistry; 1981 Sep; 20(20):5662-9. PubMed ID: 7028109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dihydroorotate dehydrogenase B of Enterococcus faecalis. Characterization and insights into chemical mechanism.
    Marcinkeviciene J; Tinney LM; Wang KH; Rogers MJ; Copeland RA
    Biochemistry; 1999 Oct; 38(40):13129-37. PubMed ID: 10529184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 2. Formate dehydrogenase.
    Hermes JD; Morrical SW; O'Leary MH; Cleland WW
    Biochemistry; 1984 Nov; 23(23):5479-88. PubMed ID: 6391544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic isotope effects in the oxidation of isotopically labeled NAD(P)H by bacterial flavoprotein monooxygenases.
    Ryerson CC; Ballou DP; Walsh C
    Biochemistry; 1982 Mar; 21(6):1144-51. PubMed ID: 7074071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pig heart lipoamide dehydrogenase: solvent equilibrium and kinetic isotope effects.
    Leichus BN; Blanchard JS
    Biochemistry; 1992 Mar; 31(12):3065-72. PubMed ID: 1554695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mechanism of oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart.
    Rydström J; Montelius J; Bäckström D; Ernster L
    Biochim Biophys Acta; 1978 Mar; 501(3):370-80. PubMed ID: 24468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate isomeroreductase.
    Argyrou A; Blanchard JS
    Biochemistry; 2004 Apr; 43(14):4375-84. PubMed ID: 15065882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isotopic analysis of the reaction catalyzed by glycerol dehydrogenase.
    Leichus BN; Blanchard JS
    Biochemistry; 1994 Dec; 33(48):14642-9. PubMed ID: 7981227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneity among the flavin-containing NADH peroxidases of group D streptococci. Analysis of the enzyme from Streptococcus faecalis ATCC 9790.
    Miller H; Poole LB; Claiborne A
    J Biol Chem; 1990 Jun; 265(17):9857-63. PubMed ID: 2161844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism of hydride transfer between NADH and 3-acetylpyridine adenine dinucleotide by the pyridine nucleotide transhydrogenase of Escherichia coli.
    Glavas NA; Bragg PD
    Biochim Biophys Acta; 1995 Oct; 1231(3):297-303. PubMed ID: 7578217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.