These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
481 related articles for article (PubMed ID: 31248022)
21. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity. Jarchi D; Casson AJ IEEE Trans Biomed Eng; 2017 Sep; 64(9):2042-2053. PubMed ID: 28212075 [TBL] [Abstract][Full Text] [Related]
22. Neural network for photoplethysmographic respiratory rate monitoring. Johansson A Med Biol Eng Comput; 2003 May; 41(3):242-8. PubMed ID: 12803287 [TBL] [Abstract][Full Text] [Related]
23. A low-complexity PPG pulse detection method for accurate estimation of the pulse rate variability (PRV) during sudden decreases in the signal amplitude. Argüello Prada EJ; Paredes Higinio A Physiol Meas; 2020 Apr; 41(3):035001. PubMed ID: 32079008 [TBL] [Abstract][Full Text] [Related]
24. Analysis of a Pulse Rate Variability Measurement Using a Smartphone Camera. Bánhalmi A; Borbás J; Fidrich M; Bilicki V; Gingl Z; Rudas L J Healthc Eng; 2018; 2018():4038034. PubMed ID: 29666670 [TBL] [Abstract][Full Text] [Related]
25. Finite State Machine Framework for Instantaneous Heart Rate Validation Using Wearable Photoplethysmography During Intensive Exercise. Chung H; Lee H; Lee J IEEE J Biomed Health Inform; 2019 Jul; 23(4):1595-1606. PubMed ID: 30235152 [TBL] [Abstract][Full Text] [Related]
26. PARHELIA: Particle Filter-Based Heart Rate Estimation From Photoplethysmographic Signals During Physical Exercise. Fujita Y; Hiromoto M; Sato T IEEE Trans Biomed Eng; 2018 Jan; 65(1):189-198. PubMed ID: 28459679 [TBL] [Abstract][Full Text] [Related]
27. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform. Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806 [TBL] [Abstract][Full Text] [Related]
28. Remote photoplethysmography with consumer smartphone reveals temporal differences between glabrous and nonglabrous skin: Pilot in vivo study. Burton T; Saiko G; Cao M; Douplik A J Biophotonics; 2023 Jan; 16(1):e202200187. PubMed ID: 36054679 [TBL] [Abstract][Full Text] [Related]
29. Combined photoplethysmographic monitoring of respiration rate and pulse: a comparison between different measurement sites in spontaneously breathing subjects. Nilsson L; Goscinski T; Kalman S; Lindberg LG; Johansson A Acta Anaesthesiol Scand; 2007 Oct; 51(9):1250-7. PubMed ID: 17711563 [TBL] [Abstract][Full Text] [Related]
30. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation. Wójcikowski M; Pankiewicz B Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210 [TBL] [Abstract][Full Text] [Related]
31. Monitoring of heart and respiratory rates in newborn infants using a new photoplethysmographic technique. Johansson A; Oberg PA; Sedin G J Clin Monit Comput; 1999 Dec; 15(7-8):461-7. PubMed ID: 12578044 [TBL] [Abstract][Full Text] [Related]
32. Improved Heart Rate Tracking Using Multiple Wrist-type Photoplethysmography during Physical Activities. Zhu L; Du D Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440267 [TBL] [Abstract][Full Text] [Related]
33. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals. Peralta E; Lazaro J; Bailon R; Marozas V; Gil E Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123 [TBL] [Abstract][Full Text] [Related]
34. Estimation of heart rate from foot worn photoplethysmography sensors during fast bike exercise. Jarchi D; Casson AJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3155-2158. PubMed ID: 28268977 [TBL] [Abstract][Full Text] [Related]
35. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation. Budidha K; Kyriacou PA Physiol Meas; 2014 Feb; 35(2):111-28. PubMed ID: 24399082 [TBL] [Abstract][Full Text] [Related]
36. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study. Hickey M; Phillips JP; Kyriacou PA J Clin Monit Comput; 2016 Oct; 30(5):727-36. PubMed ID: 26318315 [TBL] [Abstract][Full Text] [Related]
37. Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of pulse rate variability from photoplethysmography. Mejía-Mejía E; May JM; Kyriacou PA Comput Methods Programs Biomed; 2022 May; 218():106724. PubMed ID: 35255373 [TBL] [Abstract][Full Text] [Related]
38. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood. Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068 [TBL] [Abstract][Full Text] [Related]
39. Information Retrieval from Photoplethysmographic Sensors: A Comprehensive Comparison of Practical Interpolation and Breath-Extraction Techniques at Different Sampling Rates. Reali P; Lolatto R; Coelli S; Tartaglia G; Bianchi AM Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214329 [TBL] [Abstract][Full Text] [Related]
40. Accurate Heart Rate Monitoring During Physical Exercises Using PPG. Temko A IEEE Trans Biomed Eng; 2017 Sep; 64(9):2016-2024. PubMed ID: 28278454 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]