These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31248081)

  • 1. Selective Recovery of Zinc from Metallurgical Waste Materials from Processing Zinc and Lead Ores.
    Hyk W; Kitka K; Rudnicki D
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31248081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride.
    Leclerc N; Meux E; Lecuire JM
    J Hazard Mater; 2002 Apr; 91(1-3):257-70. PubMed ID: 11900917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing of metallurgical residues by flotation - bench-scale studies on two industrial products.
    Rao SR; Finch JA
    Waste Manag; 2006; 26(5):504-8. PubMed ID: 15975784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaching assessment of road materials containing primary lead and zinc slags.
    Barna R; Moszkowicz P; Gervais C
    Waste Manag; 2004; 24(9):945-55. PubMed ID: 15504672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent.
    Wu CC; Chang FC; Chen WS; Tsai MS; Wang YN
    J Environ Manage; 2014 Oct; 143():208-13. PubMed ID: 24921184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    J Environ Manage; 2016 Jul; 177():26-35. PubMed ID: 27074201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon.
    Li M; Peng B; Chai L; Peng N; Yan H; Hou D
    J Hazard Mater; 2012 Oct; 237-238():323-30. PubMed ID: 22975260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bulk flotation followed by selective leaching with biogenic ferric iron is a promising solution for eco-friendly processing of complex sulfidic ores.
    Muravyov M; Panyushkina A; Fomchenko N
    J Environ Manage; 2022 Sep; 318():115587. PubMed ID: 35759958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effect of biogenic Fe
    Panda S; Akcil A; Mishra S; Erust C
    J Hazard Mater; 2017 Mar; 325():59-70. PubMed ID: 27915100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite.
    Khanmohammadi Hazaveh P; Karimi S; Rashchi F; Sheibani S
    Ecotoxicol Environ Saf; 2020 Oct; 202():110893. PubMed ID: 32615495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of zinc and extraction of calcium and sulfur from zinc-rich gypsum residue by selective reduction roasting combined with hydrolysis.
    Zhang T; Han J; Liu W; Jiao F; Jia W; Qin W
    J Environ Manage; 2023 Apr; 331():117256. PubMed ID: 36642046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.
    Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallurgical recovery of metals from electronic waste: a review.
    Cui J; Zhang L
    J Hazard Mater; 2008 Oct; 158(2-3):228-56. PubMed ID: 18359555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes.
    Buzatu T; Popescu G; Birloaga I; Săceanu S
    Waste Manag; 2013 Mar; 33(3):699-705. PubMed ID: 23158875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.
    Han H; Sun W; Hu Y; Jia B; Tang H
    J Hazard Mater; 2014 Aug; 278():49-54. PubMed ID: 24953935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil).
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7504-16. PubMed ID: 26728285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.
    Birloaga I; Coman V; Kopacek B; Vegliò F
    Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrometallurgical processing of carbon steel EAF dust.
    Havlík T; Vidor e Souza B; Bernardes AM; Schneider IA; Miskufová A
    J Hazard Mater; 2006 Jul; 135(1-3):311-8. PubMed ID: 16442223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives regarding the use of metallurgical slags as secondary metal resources - A review of bioleaching approaches.
    Potysz A; van Hullebusch ED; Kierczak J
    J Environ Manage; 2018 Aug; 219():138-152. PubMed ID: 29738933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of zinc and copper from copper smelter flue dust. Optimisation of sulphuric acid leaching.
    Gonzalez-Montero P; Iglesias-Gonzalez N; Romero R; Mazuelos A; Carranza F
    Environ Technol; 2020 Apr; 41(9):1093-1100. PubMed ID: 30192727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.