These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31248081)

  • 21. The Development of Innovated Complex Process for Treatment of Old Flotation Tailings of Copper-Zinc Sulfide Ore.
    Valiyev K; Bugubaeva A; Nechaeva A; Artykova A; Melamud V; Stom D; Boduen A; Bulaev A
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process.
    Bojinova D; Teodosieva R
    Waste Manag Res; 2016 Jun; 34(6):511-7. PubMed ID: 26951342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recovery of metal values from copper slag and reuse of residual secondary slag.
    Sarfo P; Das A; Wyss G; Young C
    Waste Manag; 2017 Dec; 70():272-281. PubMed ID: 28988605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia.
    Williamson AJ; Verbruggen F; Chavez Rico VS; Bergmans J; Spooren J; Yurramendi L; Laing GD; Boon N; Hennebel T
    J Hazard Mater; 2021 Feb; 403():123842. PubMed ID: 33264923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Microbiological leaching of zinc and lead ores of the Tekeli deposit].
    Ilialetdinov AN; Kamalov MR; Stukanov VA
    Mikrobiologiia; 1977; 46(5):857-66. PubMed ID: 600089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors influencing the Zn and Mn extraction from pyrometallurgical sludge in the steel manufacturing industry.
    Mocellin J; Mercier G; Morel JL; Blais JF; Simonnot MO
    J Environ Manage; 2015 Aug; 158():48-54. PubMed ID: 25958078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.
    Baba AA; Adekola AF; Bale RB
    J Hazard Mater; 2009 Nov; 171(1-3):838-44. PubMed ID: 19596514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries.
    El-Nadi YA; Daoud JA; Aly HF
    J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method.
    Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z
    Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectrophotometric determination of germanium in ores, concentrates, zinc-processing products and related materials with phenylfluorone and cetyltrimethylammonium bromide after separation by iron collection and heptane extraction of germanium tetrachloride.
    Donaldson EM
    Talanta; 1984 Nov; 31(11):997-1004. PubMed ID: 18963706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium.
    Youcai Z; Stanforth R
    J Hazard Mater; 2000 Dec; 80(1-3):223-40. PubMed ID: 11080580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A New Approach to the Determination of Silicon in Zinc, Lead-Bearing Materials and in Waste Using the ICP-OES Method.
    Przybyła A; Kuc J; Wzorek Z
    Molecules; 2022 May; 27(10):. PubMed ID: 35630533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent trends and current practices for secondary processing of zinc and lead. Part I: lead recovery from secondary sources.
    Agrawal A; Sahu KK; Pandey BD
    Waste Manag Res; 2004 Aug; 22(4):240-7. PubMed ID: 15462331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.
    Wu JY; Chang FC; Wang HP; Tsai MJ; Ko CH; Chen CC
    Environ Technol; 2015; 36(23):2952-8. PubMed ID: 25191877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust.
    Pickles CA
    J Hazard Mater; 2008 Jan; 150(2):265-78. PubMed ID: 17540503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Processing of rayon waste effluent for the recovery of zinc and separation of calcium using thiophosphinic extractant.
    Jha MK; Kumar V; Bagchi D; Singh RJ; Lee JC
    J Hazard Mater; 2007 Jun; 145(1-2):221-6. PubMed ID: 17140730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-step biohydrometallurgical technology of copper-zinc concentrate processing as an opportunity to reduce negative impacts on the environment.
    Fomchenko NV; Muravyov MI
    J Environ Manage; 2018 Nov; 226():270-277. PubMed ID: 30121463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying indium with ion chromatography in hydro- and biohydrometallurgical leaching solutions.
    Ashworth C; Weller C; Frisch G
    J Sep Sci; 2019 Aug; 42(15):2517-2522. PubMed ID: 31134747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant.
    Erust C; Akcil A
    Waste Manag Res; 2016 Jun; 34(6):527-33. PubMed ID: 26987736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Biohydrometallurgical technology of a complex copper concentrate process].
    Murav'ev MI; Fomchenko NV; Kondrat'eva TF
    Prikl Biokhim Mikrobiol; 2011; 47(6):663-71. PubMed ID: 22288195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.