These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31248100)

  • 1. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications.
    Urbánek T; Jäger E; Jäger A; Hrubý M
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31248100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current development of biodegradable polymeric materials for biomedical applications.
    Song R; Murphy M; Li C; Ting K; Soo C; Zheng Z
    Drug Des Devel Ther; 2018; 12():3117-3145. PubMed ID: 30288019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic biodegradable polyesters for implantable controlled-release devices.
    Pothupitiya JU; Zheng C; Saltzman WM
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1351-1364. PubMed ID: 36197839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomedical Applications of Biodegradable Polyesters.
    Manavitehrani I; Fathi A; Badr H; Daly S; Negahi Shirazi A; Dehghani F
    Polymers (Basel); 2016 Jan; 8(1):. PubMed ID: 30979116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic polymerization of cyclic monomers in ionic liquids as a prospective synthesis method for polyesters used in drug delivery systems.
    Piotrowska U; Sobczak M
    Molecules; 2014 Dec; 20(1):1-23. PubMed ID: 25546617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resorbable polyesters: composition, properties, applications.
    Amecke B; Bendix D; Entenmann G
    Clin Mater; 1992; 10(1-2):47-50. PubMed ID: 10171204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic polymerization to polyesters in nonaqueous solvents.
    Zhao H
    Methods Enzymol; 2019; 627():1-21. PubMed ID: 31630737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism.
    Barrett DG; Yousaf MN
    Molecules; 2009 Oct; 14(10):4022-50. PubMed ID: 19924045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable 'intelligent' materials in response to physical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 Apr; 19(4):493-507. PubMed ID: 19441928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional aliphatic polyesters for biomedical and pharmaceutical applications.
    Seyednejad H; Ghassemi AH; van Nostrum CF; Vermonden T; Hennink WE
    J Control Release; 2011 May; 152(1):168-76. PubMed ID: 21223989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Bio-Based Polyester from Microbial Lipidic Residue Intended for Biomedical Application.
    Capêto AP; Azevedo-Silva J; Sousa S; Pintado M; Guimarães AS; Oliveira ALS
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.
    Chandorkar Y; Bhagat RK; Madras G; Basu B
    Biomacromolecules; 2014 Mar; 15(3):863-75. PubMed ID: 24517727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled release kinetics of p-aminosalicylic acid from biodegradable crosslinked polyesters for enhanced anti-mycobacterial activity.
    Dasgupta Q; Madras G; Chatterjee K
    Acta Biomater; 2016 Jan; 30():168-176. PubMed ID: 26596566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.
    Zia KM; Noreen A; Zuber M; Tabasum S; Mujahid M
    Int J Biol Macromol; 2016 Jan; 82():1028-40. PubMed ID: 26492854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melt Polycondensation Strategy for Amide-Functionalized l-Aspartic Acid Amphiphilic Polyester Nano-assemblies and Enzyme-Responsive Drug Delivery in Cancer Cells.
    Khuddus M; Jayakannan M
    Biomacromolecules; 2023 Jun; 24(6):2643-2660. PubMed ID: 37186892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable Shape Memory Polymers in Medicine.
    Peterson GI; Dobrynin AV; Becker ML
    Adv Healthc Mater; 2017 Nov; 6(21):. PubMed ID: 28941154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications.
    Kaniuk Ł; Stachewicz U
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5339-5362. PubMed ID: 34649426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo biocompatible shape memory polyester derived from recycled polycarbonate e-waste for biomedical application.
    Ghosal K; Pal S; Ghosh D; Jana K; Sarkar K
    Biomater Adv; 2022 Jul; 138():212961. PubMed ID: 35913244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable synthetic polyesters in the technology of controlled dosage forms of antihypertensive drugs - the overview.
    Bialik M; Kuras M; Sobczak M; Oledzka E
    Expert Opin Drug Deliv; 2019 Sep; 16(9):953-967. PubMed ID: 31369295
    [No Abstract]   [Full Text] [Related]  

  • 20. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives.
    Yi Y; Lin G; Chen S; Liu J; Zhang H; Mi P
    Mater Sci Eng C Mater Biol Appl; 2018 Feb; 83():218-232. PubMed ID: 29208282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.