BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31248401)

  • 1. VARSCOT: variant-aware detection and scoring enables sensitive and personalized off-target detection for CRISPR-Cas9.
    Wilson LOW; Hetzel S; Pockrandt C; Reinert K; Bauer DC
    BMC Biotechnol; 2019 Jun; 19(1):40. PubMed ID: 31248401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biased and Unbiased Methods for the Detection of Off-Target Cleavage by CRISPR/Cas9: An Overview.
    Martin F; Sánchez-Hernández S; Gutiérrez-Guerrero A; Pinedo-Gomez J; Benabdellah K
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27618019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Specificity of the CRISPR/Cas9 System.
    Tasan I; Zhao H
    ACS Synth Biol; 2017 Sep; 6(9):1609-1613. PubMed ID: 28911233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity.
    Höijer I; Johansson J; Gudmundsson S; Chin CS; Bunikis I; Häggqvist S; Emmanouilidou A; Wilbe M; den Hoed M; Bondeson ML; Feuk L; Gyllensten U; Ameur A
    Genome Biol; 2020 Dec; 21(1):290. PubMed ID: 33261648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool.
    Stemmer M; Thumberger T; Del Sol Keyer M; Wittbrodt J; Mateo JL
    PLoS One; 2015; 10(4):e0124633. PubMed ID: 25909470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing.
    Lee CM; Cradick TJ; Fine EJ; Bao G
    Mol Ther; 2016 Mar; 24(3):475-87. PubMed ID: 26750397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CROP: a CRISPR/Cas9 guide selection program based on mapping guide variants.
    Aprilyanto V; Aditama R; Tanjung ZA; Utomo C; Liwang T
    Sci Rep; 2021 Jan; 11(1):1504. PubMed ID: 33452424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency of off-targeting in genome edited pigs produced via direct injection of the CRISPR/Cas9 system into developing embryos.
    Carey K; Ryu J; Uh K; Lengi AJ; Clark-Deener S; Corl BA; Lee K
    BMC Biotechnol; 2019 May; 19(1):25. PubMed ID: 31060546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhytoCRISP-Ex: a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing.
    Rastogi A; Murik O; Bowler C; Tirichine L
    BMC Bioinformatics; 2016 Jul; 17(1):261. PubMed ID: 27363443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.
    Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z
    BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep.
    Wang X; Liu J; Niu Y; Li Y; Zhou S; Li C; Ma B; Kou Q; Petersen B; Sonstegard T; Huang X; Jiang Y; Chen Y
    BMC Genomics; 2018 May; 19(1):397. PubMed ID: 29801435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving Plant CRISPR Targeting that Limits Off-Target Effects.
    Wolt JD; Wang K; Sashital D; Lawrence-Dill CJ
    Plant Genome; 2016 Nov; 9(3):. PubMed ID: 27902801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress of application and off-target effects of CRISPR/Cas9.
    Zheng W; Gu F
    Yi Chuan; 2015 Oct; 37(10):1003-10. PubMed ID: 26496752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
    Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pgRNAFinder: a web-based tool to design distance independent paired-gRNA.
    Xiong Y; Xie X; Wang Y; Ma W; Liang P; Songyang Z; Dai Z
    Bioinformatics; 2017 Nov; 33(22):3642-3644. PubMed ID: 28961776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.