These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31248401)

  • 21. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens.
    Concordet JP; Haeussler M
    Nucleic Acids Res; 2018 Jul; 46(W1):W242-W245. PubMed ID: 29762716
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Dandage R; Després PC; Yachie N; Landry CR
    Genetics; 2019 Jun; 212(2):377-385. PubMed ID: 30936113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq.
    Kim D; Kim S; Kim S; Park J; Kim JS
    Genome Res; 2016 Mar; 26(3):406-15. PubMed ID: 26786045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo CRISPR editing with no detectable genome-wide off-target mutations.
    Akcakaya P; Bobbin ML; Guo JA; Malagon-Lopez J; Clement K; Garcia SP; Fellows MD; Porritt MJ; Firth MA; Carreras A; Baccega T; Seeliger F; Bjursell M; Tsai SQ; Nguyen NT; Nitsch R; Mayr LM; Pinello L; Bohlooly-Y M; Aryee MJ; Maresca M; Joung JK
    Nature; 2018 Sep; 561(7723):416-419. PubMed ID: 30209390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing.
    Wang F; Wang L; Zou X; Duan S; Li Z; Deng Z; Luo J; Lee SY; Chen S
    Biotechnol Adv; 2019; 37(5):708-729. PubMed ID: 30926472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iCSDB: an integrated database of CRISPR screens.
    Choi A; Jang I; Han H; Kim MS; Choi J; Lee J; Cho SY; Jun Y; Lee C; Kim J; Lee B; Lee S
    Nucleic Acids Res; 2021 Jan; 49(D1):D956-D961. PubMed ID: 33137185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In silico analysis of potential off-target sites to gene editing for Mucopolysaccharidosis type I using the CRISPR/Cas9 system: Implications for population-specific treatments.
    Carneiro P; de Freitas MV; Matte U
    PLoS One; 2022; 17(1):e0262299. PubMed ID: 35073349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9: A revolution in genome editing in rheumatic diseases.
    Duroux-Richard I; Giovannangeli C; Apparailly F
    Joint Bone Spine; 2017 Jan; 84(1):1-4. PubMed ID: 27825565
    [No Abstract]   [Full Text] [Related]  

  • 31. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing.
    Liu KI; Ramli MN; Woo CW; Wang Y; Zhao T; Zhang X; Yim GR; Chong BY; Gowher A; Chua MZ; Jung J; Lee JH; Tan MH
    Nat Chem Biol; 2016 Nov; 12(11):980-987. PubMed ID: 27618190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Application of CRISPR/Cas9 for the Treatment of Retinal Diseases.
    Peddle CF; MacLaren RE
    Yale J Biol Med; 2017 Dec; 90(4):533-541. PubMed ID: 29259519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants.
    Li J; Manghwar H; Sun L; Wang P; Wang G; Sheng H; Zhang J; Liu H; Qin L; Rui H; Li B; Lindsey K; Daniell H; Jin S; Zhang X
    Plant Biotechnol J; 2019 May; 17(5):858-868. PubMed ID: 30291759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].
    Ma XL; Liu YG
    Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR-Cas9 Toolkit for Actinomycete Genome Editing.
    Tong Y; Robertsen HL; Blin K; Weber T; Lee SY
    Methods Mol Biol; 2018; 1671():163-184. PubMed ID: 29170959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins.
    Hoffmann MD; Aschenbrenner S; Grosse S; Rapti K; Domenger C; Fakhiri J; Mastel M; Börner K; Eils R; Grimm D; Niopek D
    Nucleic Acids Res; 2019 Jul; 47(13):e75. PubMed ID: 30982889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.