These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 31248427)
1. Macrophage galactose-type lectin (MGL) is induced on M2 microglia and participates in the resolution phase of autoimmune neuroinflammation. Ilarregui JM; Kooij G; Rodríguez E; van der Pol SMA; Koning N; Kalay H; van der Horst JC; van Vliet SJ; García-Vallejo JJ; de Vries HE; van Kooyk Y J Neuroinflammation; 2019 Jun; 16(1):130. PubMed ID: 31248427 [TBL] [Abstract][Full Text] [Related]
2. Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation. Ingwersen J; Wingerath B; Graf J; Lepka K; Hofrichter M; Schröter F; Wedekind F; Bauer A; Schrader J; Hartung HP; Prozorovski T; Aktas O J Neuroinflammation; 2016 Feb; 13():48. PubMed ID: 26920550 [TBL] [Abstract][Full Text] [Related]
3. A novel PADRE-Kv1.3 vaccine effectively induces therapeutic antibodies and ameliorates experimental autoimmune encephalomyelitis in rats. Fan C; Long R; You Y; Wang J; Yang X; Huang S; Sheng Y; Peng X; Liu H; Wang Z; Liu K Clin Immunol; 2018 Aug; 193():98-109. PubMed ID: 29496642 [TBL] [Abstract][Full Text] [Related]
4. Redistributions of macrophages expressing the macrophage galactose-type C-type lectin (MGL) during antigen-induced chronic granulation tissue formation. Sato K; Imai Y; Higashi N; Kumamoto Y; Mukaida N; Irimura T Int Immunol; 2005 May; 17(5):559-68. PubMed ID: 15802308 [TBL] [Abstract][Full Text] [Related]
5. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation. Veremeyko T; Yung AWY; Dukhinova M; Kuznetsova IS; Pomytkin I; Lyundup A; Strekalova T; Barteneva NS; Ponomarev ED Front Immunol; 2018; 9():50. PubMed ID: 29422898 [TBL] [Abstract][Full Text] [Related]
6. Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring. Zager A; Peron JP; Mennecier G; Rodrigues SC; Aloia TP; Palermo-Neto J Brain Behav Immun; 2015 Jan; 43():159-71. PubMed ID: 25108214 [TBL] [Abstract][Full Text] [Related]
7. Interleukin-33 deficiency exacerbated experimental autoimmune encephalomyelitis with an influence on immune cells and glia cells. Xiao Y; Lai L; Chen H; Shi J; Zeng F; Li J; Feng H; Mao J; Zhang F; Wu N; Xu Y; Tan Z; Gong F; Zheng F Mol Immunol; 2018 Sep; 101():550-563. PubMed ID: 30173119 [TBL] [Abstract][Full Text] [Related]
8. S100A4 promotes experimental autoimmune encephalomyelitis by impacting microglial inflammation through TLR4/NF-κB signaling pathway. Jingjing H; Tongqian W; Shirong Y; Lan M; Jing L; Shihui M; Haijian Y; Fang Y Int Immunopharmacol; 2024 Dec; 142(Pt A):112849. PubMed ID: 39241524 [TBL] [Abstract][Full Text] [Related]
9. Connexin 30 Deficiency Attenuates Chronic but Not Acute Phases of Experimental Autoimmune Encephalomyelitis Through Induction of Neuroprotective Microglia. Fang M; Yamasaki R; Li G; Masaki K; Yamaguchi H; Fujita A; Isobe N; Kira JI Front Immunol; 2018; 9():2588. PubMed ID: 30464764 [TBL] [Abstract][Full Text] [Related]
10. MGL1 Receptor Plays a Key Role in the Control of Rodriguez T; Pacheco-Fernández T; Vázquez-Mendoza A; Nieto-Yañez O; Juárez-Avelar I; Reyes JL; Terrazas LI; Rodriguez-Sosa M Cells; 2020 Jan; 9(1):. PubMed ID: 31906385 [TBL] [Abstract][Full Text] [Related]
11. Activation of Glucagon-Like Peptide-1 Receptor Promotes Neuroprotection in Experimental Autoimmune Encephalomyelitis by Reducing Neuroinflammatory Responses. Lee CH; Jeon SJ; Cho KS; Moon E; Sapkota A; Jun HS; Ryu JH; Choi JW Mol Neurobiol; 2018 Apr; 55(4):3007-3020. PubMed ID: 28456941 [TBL] [Abstract][Full Text] [Related]
12. Atf6α deficiency suppresses microglial activation and ameliorates pathology of experimental autoimmune encephalomyelitis. Ta HM; Le TM; Ishii H; Takarada-Iemata M; Hattori T; Hashida K; Yamamoto Y; Mori K; Takahashi R; Kitao Y; Hori O J Neurochem; 2016 Dec; 139(6):1124-1137. PubMed ID: 27333444 [TBL] [Abstract][Full Text] [Related]
13. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Berard JL; Zarruk JG; Arbour N; Prat A; Yong VW; Jacques FH; Akira S; David S Glia; 2012 Jul; 60(7):1145-59. PubMed ID: 22499213 [TBL] [Abstract][Full Text] [Related]
14. Purinergic receptors P2Y12R and P2X7R: potential targets for PET imaging of microglia phenotypes in multiple sclerosis. Beaino W; Janssen B; Kooij G; van der Pol SMA; van Het Hof B; van Horssen J; Windhorst AD; de Vries HE J Neuroinflammation; 2017 Dec; 14(1):259. PubMed ID: 29273052 [TBL] [Abstract][Full Text] [Related]
15. Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Experimental Autoimmune Encephalomyelitis. Shimojima C; Takeuchi H; Jin S; Parajuli B; Hattori H; Suzumura A; Hibi H; Ueda M; Yamamoto A J Immunol; 2016 May; 196(10):4164-71. PubMed ID: 27053763 [TBL] [Abstract][Full Text] [Related]
17. Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE. Eltayeb S; Berg AL; Lassmann H; Wallström E; Nilsson M; Olsson T; Ericsson-Dahlstrand A; Sunnemark D J Neuroinflammation; 2007 May; 4():14. PubMed ID: 17484785 [TBL] [Abstract][Full Text] [Related]
18. Cell- and stage-specific localization of galectin-3, a β-galactoside-binding lectin, in a mouse model of experimental autoimmune encephalomyelitis. Itabashi T; Arima Y; Kamimura D; Higuchi K; Bando Y; Takahashi-Iwanaga H; Murakami M; Watanabe M; Iwanaga T; Nio-Kobayashi J Neurochem Int; 2018 Sep; 118():176-184. PubMed ID: 29920290 [TBL] [Abstract][Full Text] [Related]
19. Pentraxin-3 is upregulated in the central nervous system during MS and EAE, but does not modulate experimental neurological disease. Ummenthum K; Peferoen LA; Finardi A; Baker D; Pryce G; Mantovani A; Bsibsi M; Bottazzi B; Peferoen-Baert R; van der Valk P; Garlanda C; Kipp M; Furlan R; van Noort JM; Amor S Eur J Immunol; 2016 Mar; 46(3):701-11. PubMed ID: 26576501 [TBL] [Abstract][Full Text] [Related]
20. Immunohistochemical analysis of spinal cord components in mouse model of experimental autoimmune encephalomyelitis. Pyka-Fosciak G; Stasiolek M; Litwin JA Folia Histochem Cytobiol; 2018; 56(3):151-158. PubMed ID: 30187907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]