BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 31249007)

  • 1. Concepts and limitations for learning developmental trajectories from single cell genomics.
    Tritschler S; Büttner M; Fischer DS; Lange M; Bergen V; Lickert H; Theis FJ
    Development; 2019 Jun; 146(12):. PubMed ID: 31249007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trajectory Algorithms to Infer Stem Cell Fate Decisions.
    Lummertz da Rocha E; Malleshaiah M
    Methods Mol Biol; 2019; 1975():193-209. PubMed ID: 31062311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating Lineage Trajectory Maps Via Integration of Single-Cell RNA-Sequencing and Lineage Tracing: Integrating transgenic lineage tracing and single-cell RNA-sequencing is a robust approach for mapping developmental lineage trajectories and cell fate changes.
    Fletcher RB; Das D; Ngai J
    Bioessays; 2018 Aug; 40(8):e1800056. PubMed ID: 29944188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lineage Inference and Stem Cell Identity Prediction Using Single-Cell RNA-Sequencing Data.
    Sagar ; Grün D
    Methods Mol Biol; 2019; 1975():277-301. PubMed ID: 31062315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Single-Cell and Spatial Transcriptomes to Understand Stem Cell Lineage Specification During Early Embryo Development.
    Peng G; Cui G; Ke J; Jing N
    Annu Rev Genomics Hum Genet; 2020 Aug; 21():163-181. PubMed ID: 32339035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental scRNAseq Trajectories in Gene- and Cell-State Space-The Flatworm Example.
    Schmidt M; Loeffler-Wirth H; Binder H
    Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33081343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq.
    Treutlein B; Brownfield DG; Wu AR; Neff NF; Mantalas GL; Espinoza FH; Desai TJ; Krasnow MA; Quake SR
    Nature; 2014 May; 509(7500):371-5. PubMed ID: 24739965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudotime Reconstruction Using TSCAN.
    Ji Z; Ji H
    Methods Mol Biol; 2019; 1935():115-124. PubMed ID: 30758823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating Cell Fate Decisions with ICGS Analysis of Single Cells.
    Salomonis N
    Methods Mol Biol; 2019; 1975():251-275. PubMed ID: 31062314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Cell RNA-Seq Reveals Cellular Hierarchies and Impaired Developmental Trajectories in Pediatric Ependymoma.
    Gojo J; Englinger B; Jiang L; Hübner JM; Shaw ML; Hack OA; Madlener S; Kirchhofer D; Liu I; Pyrdol J; Hovestadt V; Mazzola E; Mathewson ND; Trissal M; Lötsch D; Dorfer C; Haberler C; Halfmann A; Mayr L; Peyrl A; Geyeregger R; Schwalm B; Mauermann M; Pajtler KW; Milde T; Shore ME; Geduldig JE; Pelton K; Czech T; Ashenberg O; Wucherpfennig KW; Rozenblatt-Rosen O; Alexandrescu S; Ligon KL; Pfister SM; Regev A; Slavc I; Berger W; Suvà ML; Kool M; Filbin MG
    Cancer Cell; 2020 Jul; 38(1):44-59.e9. PubMed ID: 32663469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding development and stem cells using single cell-based analyses of gene expression.
    Kumar P; Tan Y; Cahan P
    Development; 2017 Jan; 144(1):17-32. PubMed ID: 28049689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational approaches for interpreting scRNA-seq data.
    Rostom R; Svensson V; Teichmann SA; Kar G
    FEBS Lett; 2017 Aug; 591(15):2213-2225. PubMed ID: 28524227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A periodic table of cell types.
    Xia B; Yanai I
    Development; 2019 Jun; 146(12):. PubMed ID: 31249003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing cell lineages from single-cell transcriptomes.
    Chen J; Rénia L; Ginhoux F
    Mol Aspects Med; 2018 Feb; 59():95-113. PubMed ID: 29107741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CellRank for directed single-cell fate mapping.
    Lange M; Bergen V; Klein M; Setty M; Reuter B; Bakhti M; Lickert H; Ansari M; Schniering J; Schiller HB; Pe'er D; Theis FJ
    Nat Methods; 2022 Feb; 19(2):159-170. PubMed ID: 35027767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data.
    Song D; Li JJ
    Genome Biol; 2021 Apr; 22(1):124. PubMed ID: 33926517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.
    Parra RG; Papadopoulos N; Ahumada-Arranz L; Kholtei JE; Mottelson N; Horokhovsky Y; Treutlein B; Soeding J
    Nucleic Acids Res; 2019 Sep; 47(17):8961-8974. PubMed ID: 31428793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell lineage inference from SNP and scRNA-Seq data.
    Ding J; Lin C; Bar-Joseph Z
    Nucleic Acids Res; 2019 Jun; 47(10):e56. PubMed ID: 30820578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording development with single cell dynamic lineage tracing.
    McKenna A; Gagnon JA
    Development; 2019 Jun; 146(12):. PubMed ID: 31249005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
    Olsson A; Venkatasubramanian M; Chaudhri VK; Aronow BJ; Salomonis N; Singh H; Grimes HL
    Nature; 2016 Sep; 537(7622):698-702. PubMed ID: 27580035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.