These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 31249287)
21. Tracking the Cracking: A Holistic Analysis of Rapid Ice Shelf Fracture Using Seismology, Geodesy, and Satellite Imagery on the Pine Island Glacier Ice Shelf, West Antarctica. Olinger SD; Lipovsky BP; Denolle MA; Crowell BW Geophys Res Lett; 2022 May; 49(10):e2021GL097604. PubMed ID: 35846344 [TBL] [Abstract][Full Text] [Related]
22. Hagen Bræ: A Surging Glacier in North Greenland-35 Years of Observations. Solgaard AM; Simonsen SB; Grinsted A; Mottram R; Karlsson NB; Hansen K; Kusk A; Sørensen LS Geophys Res Lett; 2020 Mar; 47(6):e2019GL085802. PubMed ID: 32713980 [TBL] [Abstract][Full Text] [Related]
23. Regularized Coulomb Friction Laws for Ice Sheet Sliding: Application to Pine Island Glacier, Antarctica. Joughin I; Smith BE; Schoof CG Geophys Res Lett; 2019 May; 46(9):4764-4771. PubMed ID: 31244498 [TBL] [Abstract][Full Text] [Related]
24. Evaluating glacier surges in Karakoram region using earth observation data. Majeed U; Rashid I Data Brief; 2020 Jun; 30():105394. PubMed ID: 32211463 [TBL] [Abstract][Full Text] [Related]
25. Distinct patterns of seasonal Greenland glacier velocity. Moon T; Joughin I; Smith B; van den Broeke MR; van de Berg WJ; Noël B; Usher M Geophys Res Lett; 2014 Oct; 41(20):7209-7216. PubMed ID: 25821275 [TBL] [Abstract][Full Text] [Related]
26. Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning. Bolibar J; Rabatel A; Gouttevin I; Zekollari H; Galiez C Nat Commun; 2022 Jan; 13(1):409. PubMed ID: 35058461 [TBL] [Abstract][Full Text] [Related]
27. The hazardous 2017-2019 surge and river damming by Shispare Glacier, Karakoram. Bhambri R; Watson CS; Hewitt K; Haritashya UK; Kargel JS; Pratap Shahi A; Chand P; Kumar A; Verma A; Govil H Sci Rep; 2020 Mar; 10(1):4685. PubMed ID: 32170170 [TBL] [Abstract][Full Text] [Related]
28. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet. Schroeder DM; Blankenship DD; Young DA; Quartini E Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9070-2. PubMed ID: 24927578 [TBL] [Abstract][Full Text] [Related]
29. Assessment of liquid and solid water storage in rock glaciers versus glacier ice in the Austrian Alps. Wagner T; Seelig S; Helfricht K; Fischer A; Avian M; Krainer K; Winkler G Sci Total Environ; 2021 Dec; 800():149593. PubMed ID: 34399338 [TBL] [Abstract][Full Text] [Related]
30. Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Foght J; Aislabie J; Turner S; Brown CE; Ryburn J; Saul DJ; Lawson W Microb Ecol; 2004 May; 47(4):329-40. PubMed ID: 14994176 [TBL] [Abstract][Full Text] [Related]
31. 21st-century evolution of Greenland outlet glacier velocities. Moon T; Joughin I; Smith B; Howat I Science; 2012 May; 336(6081):576-8. PubMed ID: 22556249 [TBL] [Abstract][Full Text] [Related]
32. Pan-ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Miles BW; Stokes CR; Jamieson SS Sci Adv; 2016 May; 2(5):e1501350. PubMed ID: 27386519 [TBL] [Abstract][Full Text] [Related]
33. Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise. Robel AA; Seroussi H; Roe GH Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14887-14892. PubMed ID: 31285345 [TBL] [Abstract][Full Text] [Related]
34. Changing friction at the base of an Alpine glacier. Gräff D; Walter F Sci Rep; 2021 May; 11(1):10872. PubMed ID: 34035356 [TBL] [Abstract][Full Text] [Related]
35. Long-term analysis of glaciers and glacier lakes in the Central and Eastern Himalaya. Agarwal V; Van Wyk de Vries M; Haritashya UK; Garg S; Kargel JS; Chen YJ; Shugar DH Sci Total Environ; 2023 Nov; 898():165598. PubMed ID: 37467985 [TBL] [Abstract][Full Text] [Related]
37. Undercutting of marine-terminating glaciers in West Greenland. Rignot E; Fenty I; Xu Y; Cai C; Kemp C Geophys Res Lett; 2015 Jul; 42(14):5909-5917. PubMed ID: 31031446 [TBL] [Abstract][Full Text] [Related]
38. Hydrothermal combination and geometry control the spatial and temporal rhythm of glacier flow. Yan X; Ma J; Ma X; Chen P; Wang S; Wei Y; Zhu G; Zhang W Sci Total Environ; 2021 Mar; 760():144315. PubMed ID: 33340738 [TBL] [Abstract][Full Text] [Related]
39. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Zemp M; Huss M; Thibert E; Eckert N; McNabb R; Huber J; Barandun M; Machguth H; Nussbaumer SU; Gärtner-Roer I; Thomson L; Paul F; Maussion F; Kutuzov S; Cogley JG Nature; 2019 Apr; 568(7752):382-386. PubMed ID: 30962533 [TBL] [Abstract][Full Text] [Related]
40. Response to Comment on "Friction at the bed does not control fast glacier flow". Stearns LA; van der Veen C Science; 2019 Feb; 363(6427):. PubMed ID: 30733389 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]