These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 31249287)
41. Recent Surge Behavior of Walsh Glacier Revealed by Remote Sensing Data. Fu X; Zhou J Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012918 [TBL] [Abstract][Full Text] [Related]
42. Interannual Dynamics of Ice Cliff Populations on Debris-Covered Glaciers From Remote Sensing Observations and Stochastic Modeling. Kneib M; Miles ES; Buri P; Molnar P; McCarthy M; Fugger S; Pellicciotti F J Geophys Res Earth Surf; 2021 Oct; 126(10):e2021JF006179. PubMed ID: 35860443 [TBL] [Abstract][Full Text] [Related]
43. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt. Tuckett PA; Ely JC; Sole AJ; Livingstone SJ; Davison BJ; Melchior van Wessem J; Howard J Nat Commun; 2019 Sep; 10(1):4311. PubMed ID: 31541114 [TBL] [Abstract][Full Text] [Related]
44. Glacier Geophysics: Dynamic response of glaciers to changing climate may shed light on processes in the earth's interior. Kamb B Science; 1964 Oct; 146(3642):353-65. PubMed ID: 17739514 [TBL] [Abstract][Full Text] [Related]
45. A modified viscous flow law for natural glacier ice: Scaling from laboratories to ice sheets. Ranganathan M; Minchew B Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2309788121. PubMed ID: 38814868 [TBL] [Abstract][Full Text] [Related]
46. Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Lhermitte S; Sun S; Shuman C; Wouters B; Pattyn F; Wuite J; Berthier E; Nagler T Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24735-24741. PubMed ID: 32929004 [TBL] [Abstract][Full Text] [Related]
47. Response of glacier modelling parameters to time, space, and model complexity: Examples from eastern slopes of Canadian Rocky Mountains. Silwal G; Ammar ME; Thapa A; Bonsal B; Faramarzi M Sci Total Environ; 2023 May; 872():162156. PubMed ID: 36773922 [TBL] [Abstract][Full Text] [Related]
48. Helheim Glacier ice velocity variability responds to runoff and terminus position change at different timescales. Ultee L; Felikson D; Minchew B; Stearns LA; Riel B Nat Commun; 2022 Oct; 13(1):6022. PubMed ID: 36224175 [TBL] [Abstract][Full Text] [Related]
49. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Sundal AV; Shepherd A; Nienow P; Hanna E; Palmer S; Huybrechts P Nature; 2011 Jan; 469(7331):521-4. PubMed ID: 21270891 [TBL] [Abstract][Full Text] [Related]
50. Modelling water flow under glaciers and ice sheets. Flowers GE Proc Math Phys Eng Sci; 2015 Apr; 471(2176):20140907. PubMed ID: 27547082 [TBL] [Abstract][Full Text] [Related]
51. Accelerated global glacier mass loss in the early twenty-first century. Hugonnet R; McNabb R; Berthier E; Menounos B; Nuth C; Girod L; Farinotti D; Huss M; Dussaillant I; Brun F; Kääb A Nature; 2021 Apr; 592(7856):726-731. PubMed ID: 33911269 [TBL] [Abstract][Full Text] [Related]
52. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach. McNabb RW; Womble JN; Prakash A; Gens R; Haselwimmer CE PLoS One; 2016; 11(11):e0164444. PubMed ID: 27828967 [TBL] [Abstract][Full Text] [Related]
53. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Pritchard HD; Arthern RJ; Vaughan DG; Edwards LA Nature; 2009 Oct; 461(7266):971-5. PubMed ID: 19776741 [TBL] [Abstract][Full Text] [Related]
54. A decade of progress in observing and modelling Antarctic subglacial water systems. Fricker HA; Siegfried MR; Carter SP; Scambos TA Philos Trans A Math Phys Eng Sci; 2016 Jan; 374(2059):. PubMed ID: 26667904 [TBL] [Abstract][Full Text] [Related]
55. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Geyman EC; J J van Pelt W; Maloof AC; Aas HF; Kohler J Nature; 2022 Jan; 601(7893):374-379. PubMed ID: 35046605 [TBL] [Abstract][Full Text] [Related]
56. Future sea-level rise from Greenland's main outlet glaciers in a warming climate. Nick FM; Vieli A; Andersen ML; Joughin I; Payne A; Edwards TL; Pattyn F; van de Wal RS Nature; 2013 May; 497(7448):235-8. PubMed ID: 23657350 [TBL] [Abstract][Full Text] [Related]
57. Anthropogenic influence on surface changes at the Olivares glaciers; Central Chile. Barandun M; Bravo C; Grobety B; Jenk T; Fang L; Naegeli K; Rivera A; Cisternas S; Münster T; Schwikowski M Sci Total Environ; 2022 Aug; 833():155068. PubMed ID: 35413346 [TBL] [Abstract][Full Text] [Related]
58. Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland. Laidre KL; Moon T; Hauser DD; McGovern R; Heide-Jørgensen MP; Dietz R; Hudson B Biol Lett; 2016 Oct; 12(10):. PubMed ID: 27784729 [TBL] [Abstract][Full Text] [Related]
59. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Jones RS; Mackintosh AN; Norton KP; Golledge NR; Fogwill CJ; Kubik PW; Christl M; Greenwood SL Nat Commun; 2015 Nov; 6():8910. PubMed ID: 26608558 [TBL] [Abstract][Full Text] [Related]
60. Accelerating Ice Loss From Peripheral Glaciers in North Greenland. Khan SA; Colgan W; Neumann TA; van den Broeke MR; Brunt KM; Noël B; Bamber JL; Hassan J; Bjørk AA Geophys Res Lett; 2022 Jun; 49(12):e2022GL098915. PubMed ID: 35865910 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]