BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31249345)

  • 1. Lineage tracing analysis of cone photoreceptor associated cis-regulatory elements in the developing chicken retina.
    Schick E; McCaffery SD; Keblish EE; Thakurdin C; Emerson MM
    Sci Rep; 2019 Jun; 9(1):9358. PubMed ID: 31249345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate-restricted retinal progenitor cells adopt a molecular profile and spatial position distinct from multipotent progenitor cells.
    Buenaventura DF; Ghinia-Tegla MG; Emerson MM
    Dev Biol; 2018 Nov; 443(1):35-49. PubMed ID: 30145104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Otx2 and Onecut1 promote the fates of cone photoreceptors and horizontal cells and repress rod photoreceptors.
    Emerson MM; Surzenko N; Goetz JJ; Trimarchi J; Cepko CL
    Dev Cell; 2013 Jul; 26(1):59-72. PubMed ID: 23867227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cis-regulatory analysis of Onecut1 expression in fate-restricted retinal progenitor cells.
    Patoori S; Jean-Charles N; Gopal A; Sulaiman S; Gopal S; Wang B; Souferi B; Emerson MM
    Neural Dev; 2020 Mar; 15(1):5. PubMed ID: 32192535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of rod versus cone photoreceptor-specific progenitors from retinal precursor cells.
    Khalili S; Ballios BG; Belair-Hickey J; Donaldson L; Liu J; Coles BLK; Grisé KN; Baakdhah T; Bader GD; Wallace VA; Bernier G; Shoichet MS; van der Kooy D
    Stem Cell Res; 2018 Dec; 33():215-227. PubMed ID: 30453152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of early photoreceptor cis-regulatory elements and their relation to Onecut1.
    Jean-Charles N; Buenaventura DF; Emerson MM
    Neural Dev; 2018 Nov; 13(1):26. PubMed ID: 30466480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A regulatory sequence from the
    Blixt MK; Hallböök F
    Mol Vis; 2016; 22():1405-1420. PubMed ID: 28003731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Notch signaling represses cone photoreceptor formation through the regulation of retinal progenitor cell states.
    Chen X; Emerson MM
    Sci Rep; 2021 Jul; 11(1):14525. PubMed ID: 34267251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted effects of retinoic acid signaling upon photoreceptor development in zebrafish.
    Prabhudesai SN; Cameron DA; Stenkamp DL
    Dev Biol; 2005 Nov; 287(1):157-67. PubMed ID: 16197938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals.
    Kim JW; Yang HJ; Oel AP; Brooks MJ; Jia L; Plachetzki DC; Li W; Allison WT; Swaroop A
    Dev Cell; 2016 Jun; 37(6):520-32. PubMed ID: 27326930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IGF-1 produced by cone photoreceptors regulates rod progenitor proliferation in the teleost retina.
    Zygar CA; Colbert S; Yang D; Fernald RD
    Brain Res Dev Brain Res; 2005 Jan; 154(1):91-100. PubMed ID: 15617759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the contribution of known cis-elements in the mouse cone arrestin gene to its cone-specific expression.
    Pickrell SW; Zhu X; Wang X; Craft CM
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):3877-84. PubMed ID: 15505032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the precision of genetic lineage tracing using dual recombinases.
    He L; Li Y; Li Y; Pu W; Huang X; Tian X; Wang Y; Zhang H; Liu Q; Zhang L; Zhao H; Tang J; Ji H; Cai D; Han Z; Han Z; Nie Y; Hu S; Wang QD; Sun R; Fei J; Wang F; Chen T; Yan Y; Huang H; Pu WT; Zhou B
    Nat Med; 2017 Dec; 23(12):1488-1498. PubMed ID: 29131159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional profiling of murine retinas undergoing semi-synchronous cone photoreceptor differentiation.
    Kaufman ML; Park KU; Goodson NB; Chew S; Bersie S; Jones KL; Lamba DA; Brzezinski JA
    Dev Biol; 2019 Sep; 453(2):155-167. PubMed ID: 31163126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Genes With Enriched Expression in Early Developing Mouse Cone Photoreceptors.
    Buenaventura DF; Corseri A; Emerson MM
    Invest Ophthalmol Vis Sci; 2019 Jul; 60(8):2787-2799. PubMed ID: 31260032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina.
    Yaron O; Farhy C; Marquardt T; Applebury M; Ashery-Padan R
    Development; 2006 Apr; 133(7):1367-78. PubMed ID: 16510501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of the ThrbCRM1-centered gene regulatory network.
    Souferi B; Emerson MM
    Biol Open; 2019 Apr; 8(4):. PubMed ID: 30971410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina.
    Rich KA; Zhan Y; Blanks JC
    J Comp Neurol; 1997 Nov; 388(1):47-63. PubMed ID: 9364238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks.
    Kaewkhaw R; Kaya KD; Brooks M; Homma K; Zou J; Chaitankar V; Rao M; Swaroop A
    Stem Cells; 2015 Dec; 33(12):3504-18. PubMed ID: 26235913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM
    Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.