These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31249345)
1. Lineage tracing analysis of cone photoreceptor associated cis-regulatory elements in the developing chicken retina. Schick E; McCaffery SD; Keblish EE; Thakurdin C; Emerson MM Sci Rep; 2019 Jun; 9(1):9358. PubMed ID: 31249345 [TBL] [Abstract][Full Text] [Related]
2. Fate-restricted retinal progenitor cells adopt a molecular profile and spatial position distinct from multipotent progenitor cells. Buenaventura DF; Ghinia-Tegla MG; Emerson MM Dev Biol; 2018 Nov; 443(1):35-49. PubMed ID: 30145104 [TBL] [Abstract][Full Text] [Related]
3. Otx2 and Onecut1 promote the fates of cone photoreceptors and horizontal cells and repress rod photoreceptors. Emerson MM; Surzenko N; Goetz JJ; Trimarchi J; Cepko CL Dev Cell; 2013 Jul; 26(1):59-72. PubMed ID: 23867227 [TBL] [Abstract][Full Text] [Related]
4. Cis-regulatory analysis of Onecut1 expression in fate-restricted retinal progenitor cells. Patoori S; Jean-Charles N; Gopal A; Sulaiman S; Gopal S; Wang B; Souferi B; Emerson MM Neural Dev; 2020 Mar; 15(1):5. PubMed ID: 32192535 [TBL] [Abstract][Full Text] [Related]
5. Induction of rod versus cone photoreceptor-specific progenitors from retinal precursor cells. Khalili S; Ballios BG; Belair-Hickey J; Donaldson L; Liu J; Coles BLK; Grisé KN; Baakdhah T; Bader GD; Wallace VA; Bernier G; Shoichet MS; van der Kooy D Stem Cell Res; 2018 Dec; 33():215-227. PubMed ID: 30453152 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of early photoreceptor cis-regulatory elements and their relation to Onecut1. Jean-Charles N; Buenaventura DF; Emerson MM Neural Dev; 2018 Nov; 13(1):26. PubMed ID: 30466480 [TBL] [Abstract][Full Text] [Related]
7. A regulatory sequence from the Blixt MK; Hallböök F Mol Vis; 2016; 22():1405-1420. PubMed ID: 28003731 [TBL] [Abstract][Full Text] [Related]
8. Notch signaling represses cone photoreceptor formation through the regulation of retinal progenitor cell states. Chen X; Emerson MM Sci Rep; 2021 Jul; 11(1):14525. PubMed ID: 34267251 [TBL] [Abstract][Full Text] [Related]
9. Targeted effects of retinoic acid signaling upon photoreceptor development in zebrafish. Prabhudesai SN; Cameron DA; Stenkamp DL Dev Biol; 2005 Nov; 287(1):157-67. PubMed ID: 16197938 [TBL] [Abstract][Full Text] [Related]
10. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals. Kim JW; Yang HJ; Oel AP; Brooks MJ; Jia L; Plachetzki DC; Li W; Allison WT; Swaroop A Dev Cell; 2016 Jun; 37(6):520-32. PubMed ID: 27326930 [TBL] [Abstract][Full Text] [Related]
11. IGF-1 produced by cone photoreceptors regulates rod progenitor proliferation in the teleost retina. Zygar CA; Colbert S; Yang D; Fernald RD Brain Res Dev Brain Res; 2005 Jan; 154(1):91-100. PubMed ID: 15617759 [TBL] [Abstract][Full Text] [Related]
12. Deciphering the contribution of known cis-elements in the mouse cone arrestin gene to its cone-specific expression. Pickrell SW; Zhu X; Wang X; Craft CM Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):3877-84. PubMed ID: 15505032 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the precision of genetic lineage tracing using dual recombinases. He L; Li Y; Li Y; Pu W; Huang X; Tian X; Wang Y; Zhang H; Liu Q; Zhang L; Zhao H; Tang J; Ji H; Cai D; Han Z; Han Z; Nie Y; Hu S; Wang QD; Sun R; Fei J; Wang F; Chen T; Yan Y; Huang H; Pu WT; Zhou B Nat Med; 2017 Dec; 23(12):1488-1498. PubMed ID: 29131159 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional profiling of murine retinas undergoing semi-synchronous cone photoreceptor differentiation. Kaufman ML; Park KU; Goodson NB; Chew S; Bersie S; Jones KL; Lamba DA; Brzezinski JA Dev Biol; 2019 Sep; 453(2):155-167. PubMed ID: 31163126 [TBL] [Abstract][Full Text] [Related]
15. Identification of Genes With Enriched Expression in Early Developing Mouse Cone Photoreceptors. Buenaventura DF; Corseri A; Emerson MM Invest Ophthalmol Vis Sci; 2019 Jul; 60(8):2787-2799. PubMed ID: 31260032 [TBL] [Abstract][Full Text] [Related]
16. Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina. Yaron O; Farhy C; Marquardt T; Applebury M; Ashery-Padan R Development; 2006 Apr; 133(7):1367-78. PubMed ID: 16510501 [TBL] [Abstract][Full Text] [Related]
17. Quantitative analysis of the ThrbCRM1-centered gene regulatory network. Souferi B; Emerson MM Biol Open; 2019 Apr; 8(4):. PubMed ID: 30971410 [TBL] [Abstract][Full Text] [Related]
18. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. Rich KA; Zhan Y; Blanks JC J Comp Neurol; 1997 Nov; 388(1):47-63. PubMed ID: 9364238 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks. Kaewkhaw R; Kaya KD; Brooks M; Homma K; Zou J; Chaitankar V; Rao M; Swaroop A Stem Cells; 2015 Dec; 33(12):3504-18. PubMed ID: 26235913 [TBL] [Abstract][Full Text] [Related]
20. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors. Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]