BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31249690)

  • 1. Are model organisms representative for climate change research? Testing thermal tolerance in wild and laboratory zebrafish populations.
    Morgan R; Sundin J; Finnøen MH; Dresler G; Vendrell MM; Dey A; Sarkar K; Jutfelt F
    Conserv Physiol; 2019; 7(1):coz036. PubMed ID: 31249690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees.
    Gonzalez VH; Oyen K; Aguilar ML; Herrera A; Martin RD; Ospina R
    Ecol Evol; 2022 Dec; 12(12):e9560. PubMed ID: 36479027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low potential for evolutionary rescue from climate change in a tropical fish.
    Morgan R; Finnøen MH; Jensen H; Pélabon C; Jutfelt F
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33365-33372. PubMed ID: 33318195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective practices for thermal tolerance polygon experiments using mottled catfish Corydoras paleatus.
    Conte M; de Campos DF; Eme J
    J Therm Biol; 2023 Jul; 115():103616. PubMed ID: 37437371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited variability in upper thermal tolerance among pure and hybrid populations of a cold-water fish.
    Wells ZR; McDonnell LH; Chapman LJ; Fraser DJ
    Conserv Physiol; 2016; 4(1):cow063. PubMed ID: 27990291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature tolerance and oxygen consumption of two South American tetras, Paracheirodon innessi and Hyphessobrycon herbertaxelrodi.
    Cooper CJ; Mueller CA; Eme J
    J Therm Biol; 2019 Dec; 86():102434. PubMed ID: 31789229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT
    Morgan R; Finnøen MH; Jutfelt F
    Sci Rep; 2018 May; 8(1):7099. PubMed ID: 29740113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term acclimation dynamics in a coldwater fish.
    Stewart EMC; Frasca VR; Wilson CC; Raby GD
    J Therm Biol; 2023 Feb; 112():103482. PubMed ID: 36796924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon.
    Debes PV; Solberg MF; Matre IH; Dyrhovden L; Glover KA
    Heredity (Edinb); 2021 Nov; 127(5):455-466. PubMed ID: 34446857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming.
    Turriago JL; Tejedo M; Hoyos JM; Bernal MH
    J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.
    Simon MN; Ribeiro PL; Navas CA
    J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.
    Allen JL; Chown SL; Janion-Scheepers C; Clusella-Trullas S
    Conserv Physiol; 2016; 4(1):cow053. PubMed ID: 27933165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low quality diet and challenging temperatures affect vital rates, but not thermal tolerance in a tropical insect expanding its diet to an exotic plant.
    Garcia-Robledo C; Charlotten-Silva M; Cruz C; Kuprewicz EK
    J Therm Biol; 2018 Oct; 77():7-13. PubMed ID: 30196902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute warming tolerance (CT
    Åsheim ER; Andreassen AH; Morgan R; Silvestre M; Jutfelt F
    PeerJ; 2024; 12():e17343. PubMed ID: 38948212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does thermal history influence thermal tolerance of the freshwater fish Galaxias zebratus in a global biodiversity hotspot?
    Olsen T; Shelton JM; Dallas HF
    J Therm Biol; 2021 Apr; 97():102890. PubMed ID: 33863447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variation in thermal tolerance of redside dace
    Leclair ATA; Drake DAR; Pratt TC; Mandrak NE
    Conserv Physiol; 2020; 8(1):coaa081. PubMed ID: 32904538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations.
    Ruthsatz K; Dahlke F; Alter K; Wohlrab S; Eterovick PC; Lyra ML; Gippner S; Cooke SJ; Peck MA
    Glob Chang Biol; 2024 May; 30(5):e17318. PubMed ID: 38771091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia inducible factor-1
    Joyce W; Perry SF
    Biol Lett; 2020 Jul; 16(7):20200292. PubMed ID: 32673542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain dysfunction during warming is linked to oxygen limitation in larval zebrafish.
    Andreassen AH; Hall P; Khatibzadeh P; Jutfelt F; Kermen F
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2207052119. PubMed ID: 36122217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream.
    Peng J; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct; 176():32-40. PubMed ID: 25026540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.