BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 3125006)

  • 1. Noninvasive measurement of tissue carbon dioxide tension using a fiberoptic conjunctival sensor: effects of respiratory and metabolic alkalosis and acidosis.
    Kram HB; Fink S; Tsang M; Markle D; Appel PL; Shoemaker WC
    Crit Care Med; 1988 Mar; 16(3):280-4. PubMed ID: 3125006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive measurement of conjunctival PCO2 with a fiberoptic sensor.
    Abraham E; Markle DR; Pinholster G; Fink SE
    Crit Care Med; 1986 Feb; 14(2):138-41. PubMed ID: 3080272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End-tidal CO2 and tissue pH in the monitoring of acid-base changes: a composite technique for continuous, minimally invasive monitoring.
    Das JB; Joshi ID; Philippart AI
    J Pediatr Surg; 1984 Dec; 19(6):758-63. PubMed ID: 6440969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of capnography in nonintubated emergency department patients with respiratory distress.
    Plewa MC; Sikora S; Engoren M; Tome D; Thomas J; Deuster A
    Acad Emerg Med; 1995 Oct; 2(10):901-8. PubMed ID: 8542491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of the ventilatory status of anesthetized birds of prey by using end-tidal carbon dioxide measured with a microstream capnometer.
    Desmarchelier M; Rondenay Y; Fitzgerald G; Lair S
    J Zoo Wildl Med; 2007 Mar; 38(1):1-6. PubMed ID: 17469268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human PaCO2 and standard base excess compensation for acid-base imbalance.
    Schlichtig R; Grogono AW; Severinghaus JW
    Crit Care Med; 1998 Jul; 26(7):1173-9. PubMed ID: 9671365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of respiratory alkalosis and acidosis on myocardial blood flow and metabolism in patients with coronary artery disease.
    Kazmaier S; Weyland A; Buhre W; Stephan H; Rieke H; Filoda K; Sonntag H
    Anesthesiology; 1998 Oct; 89(4):831-7. PubMed ID: 9777999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disparity between mainstream and sidestream end-tidal carbon dioxide values and arterial carbon dioxide levels.
    Pekdemir M; Cinar O; Yilmaz S; Yaka E; Yuksel M
    Respir Care; 2013 Jul; 58(7):1152-6. PubMed ID: 23322889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of end-tidal and transcutaneous PCO2 monitoring during sleep.
    Sanders MH; Kern NB; Costantino JP; Stiller RA; Strollo PJ; Studnicki KA; Coates JA; Richards TJ
    Chest; 1994 Aug; 106(2):472-83. PubMed ID: 7774323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of noninvasive measurements of carbon dioxide tension during withdrawal from mechanical ventilation.
    Healey CJ; Fedullo AJ; Swinburne AJ; Wahl GW
    Crit Care Med; 1987 Aug; 15(8):764-8. PubMed ID: 3111790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of acid-base balance on neostigmine antagonism of d-tubocurarine-induced neuromuscular blockade.
    Miller RD; Van Nyhuis LS; Eger EI; Way WL
    Anesthesiology; 1975 Apr; 42(4):377-83. PubMed ID: 235227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrochloric acid infusion for treatment of metabolic alkalosis associated with respiratory acidosis.
    Brimioulle S; Berre J; Dufaye P; Vincent JL; Degaute JP; Kahn RJ
    Crit Care Med; 1989 Mar; 17(3):232-6. PubMed ID: 2493354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple and accurate monitoring of end-tidal carbon dioxide tensions during high-frequency jet ventilation.
    Algora-Weber A; Rubio JJ; Dominguez de Villota E; Cortes JL; Gomez D; Mosquera JM
    Crit Care Med; 1986 Oct; 14(10):895-7. PubMed ID: 3093150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of oxygen uptake during sodium bicarbonate infusion.
    Patterson RW; Sullivan SF
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Sep; 45(3):399-402. PubMed ID: 29867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of arterial puncture on ventilation.
    Sahni AS; Gonzalez H; Tulaimat A
    Heart Lung; 2017; 46(3):149-152. PubMed ID: 28392039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrepancies between transcutaneous and end-tidal carbon dioxide monitoring in the critically ill neonate with respiratory distress syndrome.
    Hand IL; Shepard EK; Krauss AN; Auld PA
    Crit Care Med; 1989 Jun; 17(6):556-9. PubMed ID: 2498038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium.
    Krapf R; Beeler I; Hertner D; Hulter HN
    N Engl J Med; 1991 May; 324(20):1394-401. PubMed ID: 1902283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference between end-tidal and arterial PCO2 in exercise.
    Jones NL; Robertson DG; Kane JW
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Nov; 47(5):954-60. PubMed ID: 511720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Breathing Improves End-Tidal Carbon Dioxide Monitoring of an Oxygen Nasal Cannula-Based Capnometry Device in Subjects Extubated After Abdominal Surgery.
    Takaki S; Mizutani K; Fukuchi M; Yoshida T; Idei M; Matsuda Y; Yamaguchi Y; Miyashita T; Nomura T; Yamaguchi O; Goto T
    Respir Care; 2017 Jan; 62(1):86-91. PubMed ID: 27899530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concordance of end-tidal carbon dioxide and arterial carbon dioxide in severe traumatic brain injury.
    Lee SW; Hong YS; Han C; Kim SJ; Moon SW; Shin JH; Baek KJ
    J Trauma; 2009 Sep; 67(3):526-30. PubMed ID: 19741395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.