These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31250068)
1. Functionalized acupuncture needle as a SERS-active platform for rapid and sensitive determination of adenosine triphosphate. Li P; Ge M; Lin D; Yang L Anal Bioanal Chem; 2019 Sep; 411(22):5669-5679. PubMed ID: 31250068 [TBL] [Abstract][Full Text] [Related]
2. Amphiphilic Functionalized Acupuncture Needle as SERS Sensor for In Situ Multiphase Detection. Zhou B; Mao M; Cao X; Ge M; Tang X; Li S; Lin D; Yang L; Liu J Anal Chem; 2018 Mar; 90(6):3826-3832. PubMed ID: 29457458 [TBL] [Abstract][Full Text] [Related]
3. Minimally invasive surface-enhanced Raman scattering detection with depth profiles based on a surface-enhanced Raman scattering-active acupuncture needle. Dong J; Chen Q; Rong C; Li D; Rao Y Anal Chem; 2011 Aug; 83(16):6191-5. PubMed ID: 21728307 [TBL] [Abstract][Full Text] [Related]
4. Functionalized Acupuncture Needle as Surface-Enhanced Resonance Raman Spectroscopy Sensor for Rapid and Sensitive Detection of Dopamine in Serum and Cerebrospinal Fluid. Li P; Zhou B; Cao X; Tang X; Yang L; Hu L; Liu J Chemistry; 2017 Oct; 23(57):14278-14285. PubMed ID: 28722332 [TBL] [Abstract][Full Text] [Related]
5. Liquid-liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy. Liu J; Li J; Li F; Zhou Y; Hu X; Xu T; Xu W Anal Bioanal Chem; 2018 Aug; 410(21):5277-5285. PubMed ID: 29943263 [TBL] [Abstract][Full Text] [Related]
6. Versatile, reusable and highly sensitive SERS-based point-of-care testing microplatform for reliable ATP detection. Chi J; Xie Q; Huang G; Xie S; Lin X; Huang G Biosens Bioelectron; 2024 Dec; 265():116710. PubMed ID: 39190969 [TBL] [Abstract][Full Text] [Related]
7. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
8. Assembling PVP-Au NPs as portable chip for sensitive detection of cyanide with surface-enhanced Raman spectroscopy. Li P; Li P; Tan X; Wang J; Zhang Y; Han H; Yang L Anal Bioanal Chem; 2020 May; 412(12):2863-2871. PubMed ID: 32112131 [TBL] [Abstract][Full Text] [Related]
9. Target-activated DNA nanomachines for the ATP detection based on the SERS of plasmonic coupling from gold nanoparticle aggregation. Cui Y; Wang H; Liu S; Wang Y; Huang J Analyst; 2020 Jan; 145(2):445-452. PubMed ID: 31819931 [TBL] [Abstract][Full Text] [Related]
10. Single gold nanowire-based nanosensor for adenosine triphosphate sensing by using in-situ surface-enhanced Raman scattering technique. Zhu Y; Qiu X; Chen X; Huang M; Li Y Talanta; 2022 Nov; 249():123675. PubMed ID: 35716474 [TBL] [Abstract][Full Text] [Related]
11. Approach for determination of ATP:ADP molar ratio in mixed solution by surface-enhanced Raman scattering. Fang H; Yin HJ; Lv MY; Xu HJ; Zhao YM; Zhang X; Wu ZL; Liu L; Tan TW Biosens Bioelectron; 2015 Jul; 69():71-6. PubMed ID: 25703730 [TBL] [Abstract][Full Text] [Related]
12. In situ synthesis of graphene oxide/gold nanocomposites as ultrasensitive surface-enhanced Raman scattering substrates for clenbuterol detection. Sun Y; Chen H; Ma P; Li J; Zhang Z; Shi H; Zhang X Anal Bioanal Chem; 2020 Jan; 412(1):193-201. PubMed ID: 31760449 [TBL] [Abstract][Full Text] [Related]
13. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526 [TBL] [Abstract][Full Text] [Related]
14. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007 [TBL] [Abstract][Full Text] [Related]
15. Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy. Cao C; Li P; Liao H; Wang J; Tang X; Yang L Anal Bioanal Chem; 2020 Jul; 412(19):4609-4617. PubMed ID: 32548768 [TBL] [Abstract][Full Text] [Related]
16. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids. Wu HC; Chen TC; Tsai HJ; Chen CS Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878 [TBL] [Abstract][Full Text] [Related]
17. Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles. Langer J; García I; Liz-Marzán LM Faraday Discuss; 2017 Dec; 205():363-375. PubMed ID: 28880321 [TBL] [Abstract][Full Text] [Related]
18. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
19. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays. Pham XH; Hahm E; Kim TH; Kim HM; Lee SH; Lee YS; Jeong DH; Jun BH Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644380 [TBL] [Abstract][Full Text] [Related]
20. Gap-Tethered Au@AgAu Raman Tags for the Ratiometric Detection of MC-LR. Zhao Y; Zheng F; Ke W; Zhang W; Shi L; Liu H Anal Chem; 2019 Jun; 91(11):7162-7172. PubMed ID: 31066265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]