BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31250227)

  • 1. A comparison of ion channel current blockades caused by individual poly(ethylene glycol) molecules and polyoxometalate nanoclusters.
    Wang H; Kasianowicz JJ; Robertson JWF; Poster DL; Ettedgui J
    Eur Phys J E Soft Matter; 2019 Jun; 42(6):83. PubMed ID: 31250227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores.
    Talarimoghari M; Baaken G; Hanselmann R; Behrends JC
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):77. PubMed ID: 29926213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of a polyelectrolyte through aerolysin channel as a function of applied voltage and concentration
    Pastoriza-Gallego M; Thiébot B; Bacri L; Auvray L; Pelta J
    Eur Phys J E Soft Matter; 2018 May; 41(5):58. PubMed ID: 29748865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and [Formula: see text]-hemolysin nanopores
    Fennouri A; Ramiandrisoa J; Bacri L; Mathé J; Daniel R
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):127. PubMed ID: 30338424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore.
    Baaken G; Halimeh I; Bacri L; Pelta J; Oukhaled A; Behrends JC
    ACS Nano; 2015 Jun; 9(6):6443-9. PubMed ID: 26028280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores.
    Asandei A; Chinappi M; Lee JK; Ho Seo C; Mereuta L; Park Y; Luchian T
    Sci Rep; 2015 Jun; 5():10419. PubMed ID: 26029865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis.
    Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A
    Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore-forming toxins as tools for polymer analytics: From sizing to sequencing.
    Piguet F; Ensslen T; Bakshloo MA; Talarimoghari M; Ouldali H; Baaken G; Zaitseva E; Pastoriza-Gallego M; Behrends JC; Oukhaled A
    Methods Enzymol; 2021; 649():587-634. PubMed ID: 33712201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From current trace to the understanding of confined media.
    Roman J; Le Pioufle B; Auvray L; Pelta J; Bacri L
    Eur Phys J E Soft Matter; 2018 Sep; 41(9):99. PubMed ID: 30159758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The passage of homopolymeric RNA through small solid-state nanopores.
    van den Hout M; Skinner GM; Klijnhout S; Krudde V; Dekker NH
    Small; 2011 Aug; 7(15):2217-24. PubMed ID: 21638785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale protein pores modified with PAMAM dendrimers.
    Martin H; Kinns H; Mitchell N; Astier Y; Madathil R; Howorka S
    J Am Chem Soc; 2007 Aug; 129(31):9640-9. PubMed ID: 17636906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning of individual flexible polymers into a nanoscopic protein pore.
    Movileanu L; Cheley S; Bayley H
    Biophys J; 2003 Aug; 85(2):897-910. PubMed ID: 12885637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule mass spectrometry in solution using a solitary nanopore.
    Robertson JW; Rodrigues CG; Stanford VM; Rubinson KA; Krasilnikov OV; Kasianowicz JJ
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8207-11. PubMed ID: 17494764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores.
    Stefureac R; Long YT; Kraatz HB; Howard P; Lee JS
    Biochemistry; 2006 Aug; 45(30):9172-9. PubMed ID: 16866363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocation of Precision Polymers through Biological Nanopores.
    Boukhet M; König NF; Ouahabi AA; Baaken G; Lutz JF; Behrends JC
    Macromol Rapid Commun; 2017 Dec; 38(24):. PubMed ID: 29144014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Resolution Physical Characterization of Single Metallic Nanoparticles.
    Ettedgui J; Forstater J; Robertson JW; Kasianowicz JJ
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyelectrolyte and unfolded protein pore entrance depends on the pore geometry.
    Pastoriza-Gallego M; Gibrat G; Thiebot B; Betton JM; Pelta J
    Biochim Biophys Acta; 2009 Jun; 1788(6):1377-86. PubMed ID: 19328774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of long neutral polymers in the semidilute regime through a protein nanopore.
    Oukhaled AG; Biance AL; Pelta J; Auvray L; Bacri L
    Phys Rev Lett; 2012 Feb; 108(8):088104. PubMed ID: 22463579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of KCl enhancement in detection of nonionic polymers by nanopore sensors.
    Rodrigues CG; Machado DC; Chevtchenko SF; Krasilnikov OV
    Biophys J; 2008 Dec; 95(11):5186-92. PubMed ID: 18805926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.