These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31250287)

  • 1. Realistic low-doses of two emerging contaminants change size distribution of an annual flowering plant population.
    Patama M; Belz RG; Sinkkonen A
    Ecotoxicology; 2019 Sep; 28(7):732-743. PubMed ID: 31250287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective toxicity at low doses: experiments with three plant species and toxicants.
    Sinkkonen A; Myyrä M; Penttinen OP; Rantalainen AL
    Dose Response; 2010 Jun; 9(1):130-43. PubMed ID: 21431082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa.
    Belz RG; Patama M; Sinkkonen A
    Sci Total Environ; 2018 Aug; 631-632():510-523. PubMed ID: 29529439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective toxin effects on faster and slower growing individuals in the formation of hormesis at the population level - A case study with Lactuca sativa and PCIB.
    Belz RG; Sinkkonen A
    Sci Total Environ; 2016 Oct; 566-567():1205-1214. PubMed ID: 27267716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low toxin doses change plant size distribution in dense populations - Glyphosate exposed Hordeum vulgare as a greenhouse case study.
    Belz RG; Sinkkonen A
    Environ Int; 2019 Nov; 132():105072. PubMed ID: 31401414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low toxicant concentrations decrease the frequency of fast-growing seedlings at high densities of annual baby's breath (Gypsophila elegans).
    Sinkkonen A; Strömmer R; Penttinen OP
    Environ Pollut; 2008 Jun; 153(3):523-5. PubMed ID: 18396364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low glyphosate doses change reproduction and produce tolerant offspring in dense populations of Hordeum vulgare.
    Belz RG; Sinkkonen A
    Pest Manag Sci; 2021 Oct; 77(10):4770-4784. PubMed ID: 34148282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and Antioxidant Responses in Wheat (Triticum aestivum) to HHCB in Soil.
    Chen C; Cai Z
    Bull Environ Contam Toxicol; 2015 Aug; 95(2):272-7. PubMed ID: 26013820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecotoxicological effects of polycyclic musks and cadmium on seed germination and seedling growth of wheat (Triticum aestivum).
    Chen C; Zhou Q; Bao Y; Li Y; Wang P
    J Environ Sci (China); 2010; 22(12):1966-73. PubMed ID: 21462717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of soil HHCB and Cd contamination on the growth of wheat seedlings (Triticum aestivum) and the pollutants accumulation in plants].
    Chen CH; Zhou QX; Zhang ZN; Cai Z
    Huan Jing Ke Xue; 2011 Feb; 32(2):567-73. PubMed ID: 21528585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ecotoxicity of synthetical musks on wheat (Triticum aestivum) based on seed germination].
    Chen S; Sun LN; Sun TH; Chao L; Sun WK; Lou Y
    Huan Jing Ke Xue; 2011 May; 32(5):1477-81. PubMed ID: 21780608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination.
    Liu X; Zhang S; Shan XQ; Christie P
    Ecotoxicol Environ Saf; 2007 Oct; 68(2):305-13. PubMed ID: 17239437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates).
    Wang X; Liu Z; Wang W; Zhang C; Chen L
    Sci Total Environ; 2015 Mar; 508():122-7. PubMed ID: 25474169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicological effects of typical personal care products on seed germination and seedling development of wheat (Triticum aestivum L.).
    An J; Zhou Q; Sun Y; Xu Z
    Chemosphere; 2009 Sep; 76(10):1428-34. PubMed ID: 19631961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the polycyclic musk HHCB on individual- and population-level endpoints in Potamopyrgus antipodarum.
    Pedersen S; Selck H; Salvito D; Forbes V
    Ecotoxicol Environ Saf; 2009 May; 72(4):1190-9. PubMed ID: 19108894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of combined pollution of chromium and benzo(a)pyrene on seed growth of Lolium perenne.
    Chigbo C; Batty L
    Chemosphere; 2013 Jan; 90(2):164-9. PubMed ID: 22795067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormesis and paradoxical effects of pea (Pisum sativum L.) parameters upon exposure to formaldehyde in a wide range of doses.
    Erofeeva EA
    Ecotoxicology; 2018 Jul; 27(5):569-577. PubMed ID: 29594892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings.
    Ren W; Chang H; Teng Y
    Sci Total Environ; 2016 Dec; 572():926-934. PubMed ID: 27503631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual- and population-level effects of the synthetic musk, HHCB, on the deposit-feeding polychaete, Capitella sp. I.
    Ramskov T; Selck H; Salvito D; Forbes VE
    Environ Toxicol Chem; 2009 Dec; 28(12):2695-705. PubMed ID: 19788341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The growth and uptake of Ga and In of rice (Oryza sative L.) seedlings as affected by Ga and In concentrations in hydroponic cultures.
    Syu CH; Chien PH; Huang CC; Jiang PY; Juang KW; Lee DY
    Ecotoxicol Environ Saf; 2017 Jan; 135():32-39. PubMed ID: 27677080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.