BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31250627)

  • 1. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane.
    Liu Y; Li S; Liu X; Sun H; Yue T; Zhang X; Yan B; Cao D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23822-23831. PubMed ID: 31250627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lipid coating on the interaction between silica nanoparticles and membranes.
    Tada DB; Suraniti E; Rossi LM; Leite CA; Oliveira CS; Tumolo TC; Calemczuk R; Livache T; Baptista MS
    J Biomed Nanotechnol; 2014 Mar; 10(3):519-28. PubMed ID: 24730247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico.
    Wang W; Yang R; Zhang F; Yuan B; Yang K; Ma Y
    Nanoscale; 2018 Jun; 10(24):11670-11678. PubMed ID: 29897087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Investigations of the Interaction between the Cell Membrane and Nanoparticles Coated with a Pulmonary Surfactant.
    Bai X; Xu M; Liu S; Hu G
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20368-20376. PubMed ID: 29808987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative transmembrane penetration of nanoparticles.
    Zhang H; Ji Q; Huang C; Zhang S; Yuan B; Yang K; Ma YQ
    Sci Rep; 2015 May; 5():10525. PubMed ID: 26013284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity
    Lin X; Lin X
    Biomater Sci; 2021 Dec; 9(24):8249-8258. PubMed ID: 34757373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane.
    Zhang Z; Lin X; Gu N
    Colloids Surf B Biointerfaces; 2017 Dec; 160():92-100. PubMed ID: 28918189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Developments in the Design of Non-Biofouling Coatings for Nanoparticles and Surfaces.
    Sanchez-Cano C; Carril M
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32028729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane.
    Li Y; Zhang X; Cao D
    Soft Matter; 2014 Sep; 10(35):6844-56. PubMed ID: 25082334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of polymer coating on nanoparticles' interaction with lipid membranes studied by coarse-grained molecular dynamics simulations.
    Donadoni E; Siani P; Frigerio G; Milani C; Cui Q; Di Valentin C
    Nanoscale; 2024 May; 16(18):9108-9122. PubMed ID: 38646798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity.
    Wang S; Guo H; Li Y; Li X
    Nanoscale; 2019 Mar; 11(9):4025-4034. PubMed ID: 30768108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.
    Safavi-Sohi R; Maghari S; Raoufi M; Jalali SA; Hajipour MJ; Ghassempour A; Mahmoudi M
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22808-18. PubMed ID: 27526263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed Fluorinated/Hydrogenated Self-Assembled Monolayer-Protected Gold Nanoparticles: In Silico and In Vitro Behavior.
    Marson D; Guida F; Şologan M; Boccardo S; Pengo P; Perissinotto F; Iacuzzi V; Pellizzoni E; Polizzi S; Casalis L; Pasquato L; Pacor S; Tossi A; Posocco P
    Small; 2019 Apr; 15(17):e1900323. PubMed ID: 30941901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.