These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31251015)

  • 1. Biofilm-Templated Heteroatom-Doped Carbon-Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction.
    Ng CK; Karahan HE; Loo SCJ; Chen Y; Cao B
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24018-24026. PubMed ID: 31251015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction and removal of Cr(VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1.
    Zhang Y; Zhao Q; Chen B
    Sci Total Environ; 2022 Jan; 805():150336. PubMed ID: 34537699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.
    Yong P; Liu W; Zhang Z; Beauregard D; Johns ML; Macaskie LE
    Biotechnol Lett; 2015 Nov; 37(11):2181-91. PubMed ID: 26169199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon.
    Li M; He J; Tang Y; Sun J; Fu H; Wan Y; Qu X; Xu Z; Zheng S
    Chemosphere; 2019 Feb; 217():742-753. PubMed ID: 30448754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction and precipitation of chromium(VI) using a palladized membrane biofilm reactor.
    Wu C; Zhou J; Pang S; Yang L; Lichtfouse E; Liu H; Xia S; Rittmann BE
    Water Res; 2024 Feb; 249():120878. PubMed ID: 38007896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic reduction of hexavalent chromium by a novel nitrogen-functionalized magnetic ordered mesoporous carbon doped with Pd nanoparticles.
    Li S; Tang L; Zeng G; Wang J; Deng Y; Wang J; Xie Z; Zhou Y
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22027-22036. PubMed ID: 27539474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of Cr(VI) toxicity using Pd-nanoparticles immobilized catalytic reactor (Pd-NICaR) fabricated via plasma and gamma radiation.
    Misra N; Kumar V; Rawat S; Goel NK; Shelkar SA; Jagannath ; Singhal RK; Varshney L
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16101-16110. PubMed ID: 29594904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers.
    Huang Y; Ma H; Wang S; Shen M; Guo R; Cao X; Zhu M; Shi X
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3054-61. PubMed ID: 22591166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol.
    Tuo Y; Liu G; Dong B; Yu H; Zhou J; Wang J; Jin R
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5249-5258. PubMed ID: 28004366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using non-invasive magnetic resonance imaging (MRI) to assess the reduction of Cr(VI) using a biofilm-palladium catalyst.
    Beauregard DA; Yong P; Macaskie LE; Johns ML
    Biotechnol Bioeng; 2010 Sep; 107(1):11-20. PubMed ID: 20506297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient catalytic reduction of highly toxic aqueous Cr(VI) with Fe@CBC/Pd composites at room temperature.
    Ma B; Zhu J; Sun B; Chen C; Sun D
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8569-8575. PubMed ID: 33067787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization.
    Ding Y; Peng N; Du Y; Ji L; Cao B
    Appl Environ Microbiol; 2014 Feb; 80(4):1498-506. PubMed ID: 24362428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the electrocatalytic performance of in-situ fabricated electroactive biofilm-Pd: The role of biofilm thickness, initial Pd(II) concentration and the exposure time to Pd precursor.
    Hou YN; Ma JF; Yang ZN; Sun SY; Wang AJ; Cheng HY
    Sci Total Environ; 2020 Nov; 742():140536. PubMed ID: 32622167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media.
    Fujii S; Matsuzawa S; Nakamura Y; Ohtaka A; Teratani T; Akamatsu K; Tsuruoka T; Nawafune H
    Langmuir; 2010 May; 26(9):6230-9. PubMed ID: 20146495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Semihydrogenation of Alkynes Catalyzed by Pd Nanoparticles Immobilized on Heteroatom-Doped Hierarchical Porous Carbon Derived from Bamboo Shoots.
    Ji G; Duan Y; Zhang S; Fei B; Chen X; Yang Y
    ChemSusChem; 2017 Sep; 10(17):3427-3434. PubMed ID: 28762664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst.
    Fujii S; Matsuzawa S; Hamasaki H; Nakamura Y; Bouleghlimat A; Buurma NJ
    Langmuir; 2012 Feb; 28(5):2436-47. PubMed ID: 22204384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation.
    Suja E; Nancharaiah YV; Venugopalan VP
    Water Res; 2014 Nov; 65():395-401. PubMed ID: 25223898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium Recovery in a H2-Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Autocatalytic Reductions.
    Zhou C; Ontiveros-Valencia A; Wang Z; Maldonado J; Zhao HP; Krajmalnik-Brown R; Rittmann BE
    Environ Sci Technol; 2016 Mar; 50(5):2546-55. PubMed ID: 26883809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure.
    Yates MD; Cusick RD; Ivanov I; Logan BE
    Biotechnol Bioeng; 2014 Nov; 111(11):2349-54. PubMed ID: 24771104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.