These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31251193)

  • 1. Design Requirements of Generic Hand Exoskeletons and Survey of Hand Exoskeletons for Rehabilitation, Assistive, or Haptic Use.
    Sarac M; Solazzi M; Frisoli A
    IEEE Trans Haptics; 2019; 12(4):400-413. PubMed ID: 31251193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensors and Actuation Technologies in Exoskeletons: A Review.
    Tiboni M; Borboni A; Vérité F; Bregoli C; Amici C
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actuation Selection for Assistive Exoskeletons: Matching Capabilities to Task Requirements.
    Calanca A; Toxiri S; Costanzi D; Sartori E; Vicario R; Poliero T; Natali CD; Caldwell DG; Fiorini P; Ortiz J
    IEEE Trans Neural Syst Rehabil Eng; 2020 Sep; 28(9):2053-2062. PubMed ID: 32746325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Compliance Printing Techniques for the Fabrication of Customisable Hand Exoskeletons.
    Sarwar W; Harwin W; Janko B; Bell G
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():488-493. PubMed ID: 31374677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the design requirements for an assistive powered hand exoskeleton: A pilot explorative interview study and case series.
    Boser QA; Dawson MR; Schofield JS; Dziwenko GY; Hebert JS
    Prosthet Orthot Int; 2021 Apr; 45(2):161-169. PubMed ID: 33118453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technology acceptance and perceptions of robotic assistive devices by older adults - implications for exoskeleton design.
    Shore L; de Eyto A; O'Sullivan L
    Disabil Rehabil Assist Technol; 2022 Oct; 17(7):782-790. PubMed ID: 32988251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Development of a Scalable Structure for Adolescent Exoskeletons.
    Kardofaki M; Tabti N; Alfayad S; Ouezdou FB; Chitour Y; Dychus E
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():323-330. PubMed ID: 31374650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic literature review of evidence for the use of assistive exoskeletons in defence and security use cases.
    Farris DJ; Harris DJ; Rice HM; Campbell J; Weare A; Risius D; Armstrong N; Rayson MP
    Ergonomics; 2023 Jan; 66(1):61-87. PubMed ID: 35348442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual Physical Coupling of Two Lower-Limb Exoskeletons.
    Kucuktabak EB; Wen Y; Short M; Demirbas E; Lynch K; Pons J
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
    Young AJ; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):171-182. PubMed ID: 26829794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities.
    Fritz H; Patzer D; Galen SS
    Disabil Rehabil; 2019 Mar; 41(5):560-563. PubMed ID: 29110547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exoskeleton Application to Military Manual Handling Tasks.
    Proud JK; Lai DTH; Mudie KL; Carstairs GL; Billing DC; Garofolini A; Begg RK
    Hum Factors; 2022 May; 64(3):527-554. PubMed ID: 33203237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers.
    Heinemann AW; Jayaraman A; Mummidisetty CK; Spraggins J; Pinto D; Charlifue S; Tefertiller C; Taylor HB; Chang SH; Stampas A; Furbish CL; Field-Fote EC
    J Neurol Phys Ther; 2018 Oct; 42(4):256-267. PubMed ID: 30199518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An industrial exoskeleton user acceptance framework based on a literature review of empirical studies.
    Elprama SA; Vanderborght B; Jacobs A
    Appl Ergon; 2022 Apr; 100():103615. PubMed ID: 34847372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design-validation of a hand exoskeleton using musculoskeletal modeling.
    Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F
    Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System.
    Shen Y; Sun J; Ma J; Rosen J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():611-617. PubMed ID: 31374698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexo-glove: A 3D Printed Soft Exoskeleton Robotic Glove for Impaired Hand Rehabilitation and Assistance.
    Mohammadi A; Lavranos J; Choong P; Oetomo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2120-2123. PubMed ID: 30440822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of hazards in exoskeleton applications: a survey-based enquiry.
    Massardi S; Pinto-Fernandez D; Babič J; Dežman M; Trošt A; Grosu V; Lefeber D; Rodriguez C; Bessler J; Schaake L; Prange-Lasonder G; Veneman JF; Torricelli D
    J Neuroeng Rehabil; 2023 May; 20(1):68. PubMed ID: 37259115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.