These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31251250)

  • 1. Theoretical and experimental comparisons of the smoothing effects for different multi-layer polishing tools during computer-controlled optical surfacing.
    Li X; Wei C; Zhang S; Xu W; Shao J
    Appl Opt; 2019 Jun; 58(16):4406-4413. PubMed ID: 31251250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors.
    Nie X; Li S; Shi F; Hu H
    Appl Opt; 2014 Feb; 53(6):1020-7. PubMed ID: 24663296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rigid conformal polishing tool using non-linear visco-elastic effect.
    Kim DW; Burge JH
    Opt Express; 2010 Feb; 18(3):2242-57. PubMed ID: 20174053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smoothing tool design and performance during subaperture glass polishing.
    Suratwala T; Tham G; Steele R; Wong L; Menapace J; Ray N; Bauman B
    Appl Opt; 2023 Mar; 62(8):2061-2072. PubMed ID: 37133094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation-based smoothing model for optical polishing.
    Shu Y; Kim DW; Martin HM; Burge JH
    Opt Express; 2013 Nov; 21(23):28771-82. PubMed ID: 24514389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric smoothing model for visco-elastic polishing tools.
    Kim DW; Park WH; An HK; Burge JH
    Opt Express; 2010 Oct; 18(21):22515-26. PubMed ID: 20941150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid fabrication strategy for Ø1.5  m off-axis parabolic parts using computer-controlled optical surfacing.
    Hu H; Qi E; Luo X; Zhang X; Xue D
    Appl Opt; 2018 Dec; 57(34):F37-F43. PubMed ID: 30645273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of mid-spatial frequency errors considering the pad groove feature in smoothing polishing process.
    Nie X; Li S; Hu H; Li Q
    Appl Opt; 2014 Oct; 53(28):6332-9. PubMed ID: 25322215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of smoothing during computer-controlled optical polishing.
    Jones RA
    Appl Opt; 1995 Mar; 34(7):1162-9. PubMed ID: 21037645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the smoothing characteristics and shape-retaining ability of conformal vibration polishing and suppression strategy for full-spatial frequency errors of optics.
    Liu S; Wang H; Hou J; Zhang Q; Chen X; Zhong B; Zhang M
    Appl Opt; 2022 Jun; 61(17):5019-5030. PubMed ID: 36256179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smoothing process of conformal vibration polishing for mid-spatial frequency errors: characteristics research and guiding prediction.
    Liu SW; Wang HX; Zhang QH; Hou J; Chen XH; Xu Q; Wang C
    Appl Opt; 2021 May; 60(13):3925-3935. PubMed ID: 33983331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unicursal random maze tool path for computer-controlled optical surfacing.
    Wang C; Wang Z; Xu Q
    Appl Opt; 2015 Dec; 54(34):10128-36. PubMed ID: 26836670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head.
    Chen M; Liu H; Cheng J; Yu B; Fang Z
    Appl Opt; 2017 Jul; 56(19):5573-5582. PubMed ID: 29047518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of fiber-based tools for glass polishing using experimental and computational approaches.
    Shahinian H; Cherukuri H; Mullany B
    Appl Opt; 2016 Jun; 55(16):4307-16. PubMed ID: 27411180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Line contact ring magnetorheological finishing process for precision polishing of optics.
    Kumar Baghel P; Singh Gavel K; Sayeed Khan G; Kumar R
    Appl Opt; 2022 Apr; 61(10):2582-2590. PubMed ID: 35471326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions.
    Kim DW; Kim SW; Burge JH
    Opt Express; 2009 Nov; 17(24):21850-66. PubMed ID: 19997430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope.
    Li H; Walker D; Yu G; Zhang W
    Appl Opt; 2013 Aug; 52(23):5781-7. PubMed ID: 23938432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency division combined machining method to improve polishing efficiency of continuous phase plate by bonnet polishing.
    Zhong B; Deng W; Chen X; Wen S; Wang J; Xu Q
    Opt Express; 2021 Jan; 29(2):1597-1612. PubMed ID: 33726371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restraint of path effect on optical surface in magnetorheological jet polishing.
    Wang T; Cheng H; Zhang W; Yang H; Wu W
    Appl Opt; 2016 Feb; 55(4):935-42. PubMed ID: 26836103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cause of Ribbon Fluctuation in Magnetorheological Finishing and Its Influence on Surface Mid-Spatial Frequency Error.
    Wang B; Shi F; Tie G; Zhang W; Song C; Tian Y; Shen Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.