These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31251251)

  • 1. Bifunctional resonance effects of classical electromagnetically induced transparency and Fano response using a terahertz metamaterial resonator.
    Tang C; Niu Q; He Y; Zhang X; Wang BX
    Appl Opt; 2019 Jun; 58(16):4414-4419. PubMed ID: 31251251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator.
    Xie Q; Dong GX; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 Sep; 13(1):294. PubMed ID: 30242559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actively Controllable Terahertz Metal-Graphene Metamaterial Based on Electromagnetically Induced Transparency Effect.
    Gao L; Feng C; Li Y; Chen X; Wang Q; Zhao X
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analogue of electromagnetically induced transparency in a metal-dielectric bilayer terahertz metamaterial.
    Yue Y; He F; Chen L; Shu F; Jing X; Hong Z
    Opt Express; 2021 Jul; 29(14):21810-21819. PubMed ID: 34265960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency.
    Dong ZG; Liu H; Xu MX; Li T; Wang SM; Cao JX; Zhu SN; Zhang X
    Opt Express; 2010 Oct; 18(21):22412-7. PubMed ID: 20941141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetically induced transparency-based metal dielectric metamaterial and its terahertz sensing application.
    Reena R; Kalra Y; Kumar A
    Appl Opt; 2021 Dec; 60(34):10610-10616. PubMed ID: 35200923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range.
    Ma T; Huang Q; He H; Zhao Y; Lin X; Lu Y
    Opt Express; 2019 Jun; 27(12):16624-16634. PubMed ID: 31252886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.
    Manjappa M; Turaga SP; Srivastava YK; Bettiol AA; Singh R
    Opt Lett; 2017 Jun; 42(11):2106-2109. PubMed ID: 28569856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications.
    Amin M; Farhat M; Baǧcı H
    Sci Rep; 2013; 3():2105. PubMed ID: 23811780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials.
    Ren K; Zhang Y; Ren X; He Y; Han Q
    Front Optoelectron; 2021 Jun; 14(2):221-228. PubMed ID: 36637661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherently controllable terahertz plasmon-induced transparency using a coupled Fano-Lorentzian metasurface.
    Zhao Z; Gu Z; Ako RT; Zhao H; Sriram S
    Opt Express; 2020 May; 28(10):15573-15586. PubMed ID: 32403582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform.
    Zheng S; Ruan Z; Gao S; Long Y; Li S; He M; Zhou N; Du J; Shen L; Cai X; Wang J
    Opt Express; 2017 Oct; 25(21):25655-25662. PubMed ID: 29041230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency.
    Song Z; Chen A; Zhang J; Wang J
    Opt Express; 2019 Sep; 27(18):25196-25204. PubMed ID: 31510396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.
    Wan M; Song Y; Zhang L; Zhou F
    Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications.
    Xie Q; Dong G; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 May; 13(1):137. PubMed ID: 29740712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz Fano resonances induced by combining metamaterial modes of the same symmetry.
    Xu R; Zhang Z; Wieck AD; Jukam N
    Opt Express; 2020 Feb; 28(3):3932-3941. PubMed ID: 32122053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the plasmon-induced transparency in terahertz metamaterials.
    Li Z; Ma Y; Huang R; Singh R; Gu J; Tian Z; Han J; Zhang W
    Opt Express; 2011 Apr; 19(9):8912-9. PubMed ID: 21643144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolayer graphene sensing enabled by the strong Fano-resonant metasurface.
    Li Q; Cong L; Singh R; Xu N; Cao W; Zhang X; Tian Z; Du L; Han J; Zhang W
    Nanoscale; 2016 Oct; 8(39):17278-17284. PubMed ID: 27714077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analogue of electromagnetically induced transparency with high-Q factor in metal-dielectric metamaterials based on bright-bright mode coupling.
    He F; Han B; Li X; Lang T; Jing X; Hong Z
    Opt Express; 2019 Dec; 27(26):37590-37600. PubMed ID: 31878538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Substrate and Bright Resonances on Group Velocity in Metamaterial without Dark Resonator.
    Hokmabadi MP; Kim JH; Rivera E; Kung P; Kim SM
    Sci Rep; 2015 Sep; 5():14373. PubMed ID: 26395071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.