These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31251282)

  • 1. 2 × 2 optofluidic switch chip with an air shutter.
    Xu P; Wan J; Zhang S; Duan Y; Chen B; Zhang S
    Appl Opt; 2019 Jun; 58(17):4637-4641. PubMed ID: 31251282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. M × N electrically controlled optofluidic matrix switch.
    Guo M; Wan J; Yuan W; Zhu X; Chen Y; Wei S
    Appl Opt; 2021 Nov; 60(31):9981-9988. PubMed ID: 34807189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensible chip of optofluidic variable optical attenuator.
    Wan J; Xue FL; Wu LX; Fu YJ; Hu J; Zhang W; Hu FR
    Opt Express; 2016 May; 24(9):9683-92. PubMed ID: 27137582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband 2 × 2 lithium niobate electro-optic switch based on a Mach-Zehnder interferometer with counter-tapered directional couplers.
    Wang H; Li X; Zhang M; Chen K
    Appl Opt; 2017 Oct; 56(29):8164-8168. PubMed ID: 29047680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and modeling of an ultra-compact 2x2 nanomechanical plasmonic switch.
    Aksyuk VA
    Opt Express; 2015 May; 23(9):11404-11. PubMed ID: 25969235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit.
    Song W; Psaltis D
    Lab Chip; 2011 Jul; 11(14):2397-402. PubMed ID: 21617797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units.
    Qiao L; Tang W; Chu T
    Sci Rep; 2017 Feb; 7():42306. PubMed ID: 28181557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband optical switch for multiple spatial modes based on a silicon densely packed waveguide array.
    Chen K; Yan J; He S; Liu L
    Opt Lett; 2019 Feb; 44(4):907-910. PubMed ID: 30768017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles.
    Huang PH; Ian Lapsley M; Ahmed D; Chen Y; Wang L; Jun Huang T
    Appl Phys Lett; 2012 Oct; 101(14):141101. PubMed ID: 23112348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact 2 × 2 polarization-diversity Si-wire switch.
    Kim SH; Tanizawa K; Shoji Y; Cong G; Suzuki K; Ikeda K; Ishikawa H; Namiki S; Kawashima H
    Opt Express; 2014 Dec; 22(24):29818-26. PubMed ID: 25606911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip.
    Jia H; Zhou T; Zhang L; Ding J; Fu X; Yang L
    Opt Express; 2017 Aug; 25(17):20698-20707. PubMed ID: 29041748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crossing-free on-chip 2  ×  2 polarization-transparent switch with signals regrouping function.
    Sun C; Lai Y; Yu Y; Fu S; Shum PP; Zhang X
    Opt Lett; 2018 Aug; 43(16):4009-4012. PubMed ID: 30106939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact InGaAsP/InP nonblocking 4 × 4 trench-coupler-based Mach-Zehnder photonic switch fabric.
    Liu K; Wang L; Zhang C; Ma Q; Qi B
    Appl Opt; 2018 May; 57(14):3838-3846. PubMed ID: 29791350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic variable optical attenuator controlled by electricity.
    Wan J; Xue F; Liu C; Huang S; Fan S; Hu F
    Appl Opt; 2018 Oct; 57(28):8114-8118. PubMed ID: 30461758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip broadband silicon thermo-optic 2☓2 four-mode optical switch for optical space and local mode switching.
    Zhou T; Jia H; Ding J; Zhang L; Fu X; Yang L
    Opt Express; 2018 Apr; 26(7):8375-8384. PubMed ID: 29715805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer.
    Tanizawa K; Suzuki K; Toyama M; Ohtsuka M; Yokoyama N; Matsumaro K; Seki M; Koshino K; Sugaya T; Suda S; Cong G; Kimura T; Ikeda K; Namiki S; Kawashima H
    Opt Express; 2015 Jun; 23(13):17599-606. PubMed ID: 26191767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of low loss 1 × 1 and 1 × 2 phase-change optical switches with different crystalline phases of Ge
    Li Y; Liu FR; Han G; Chen QY; Zhao ZP; Xie XX; Huang Y; Yuan YP
    Nanotechnology; 2020 Nov; 31(45):455206. PubMed ID: 32707570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical waveguide 2 x 2 matrix switch using dielectric chip motion.
    Terui H; Kobayashi M; Noda J
    Appl Opt; 1982 Jun; 21(11):1979-84. PubMed ID: 20389981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal design of a 4  ×  4 MMI thermal optical switch with trapezoidal air trenches.
    Shang Y; Zhou J; Jiang H; He X; Ye X; Li C
    Appl Opt; 2023 Feb; 62(6):1521-1527. PubMed ID: 36821313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches.
    Suzuki K; Tanizawa K; Suda S; Matsuura H; Inoue T; Ikeda K; Namiki S; Kawashima H
    Opt Express; 2017 Apr; 25(7):7538-7546. PubMed ID: 28380875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.