BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 31251558)

  • 21. TiP
    Wen Y; Chen L; Pang Y; Guo Z; Bin D; Wang YG; Wang C; Xia Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8075-8082. PubMed ID: 28212003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible Membrane Consisting of MoP Ultrafine Nanoparticles Highly Distributed Inside N and P Codoped Carbon Nanofibers as High-Performance Anode for Potassium-Ion Batteries.
    Yi Z; Liu Y; Li Y; Zhou L; Wang Z; Zhang J; Cheng H; Lu Z
    Small; 2020 Jan; 16(2):e1905301. PubMed ID: 31821704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BiSb@Bi
    Wang Z; Duan C; Wang D; Dong K; Luo S; Liu Y; Wang Q; Zhang Y; Hao A
    J Colloid Interface Sci; 2020 Nov; 580():429-438. PubMed ID: 32711194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanded MoSe
    Chong S; Wei X; Wu Y; Sun L; Shu C; Lu Q; Hu Y; Cao G; Huang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13158-13169. PubMed ID: 33719396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile Synthesis of Si@SiC Composite as an Anode Material for Lithium-Ion Batteries.
    Ngo DT; Le HTT; Pham XM; Park CN; Park CJ
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32790-32800. PubMed ID: 28875692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast Potassium Storage in F-Induced Ultra-High Edge-Defective Carbon Nanosheets.
    Jiang Y; Yang Y; Xu R; Cheng X; Huang H; Shi P; Yao Y; Yang H; Li D; Zhou X; Chen Q; Feng Y; Rui X; Yu Y
    ACS Nano; 2021 Jun; 15(6):10217-10227. PubMed ID: 34037375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of CoSe@NC nanocubes for high performance potassium ion batteries.
    Huang Q; Fan X; Ou X; Wang H; Wu L; Yang C
    J Colloid Interface Sci; 2021 Dec; 604():157-167. PubMed ID: 34265676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A self-encapsulated porous Sb-C nanocomposite anode with excellent Na-ion storage performance.
    Pham XM; Ngo DT; Le HTT; Didwal PN; Verma R; Min CW; Park CN; Park CJ
    Nanoscale; 2018 Nov; 10(41):19399-19408. PubMed ID: 30307012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous CoC₂O₄/Graphene Oxide Nanocomposite for Advanced Potassium-Ion Storage.
    Wang L; Wei K; Zhang P; Wang H; Qi X; Wu X; Zhao W; Ju Z
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3610-3615. PubMed ID: 30744793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CuO Nanoplates for High-Performance Potassium-Ion Batteries.
    Cao K; Liu H; Li W; Han Q; Zhang Z; Huang K; Jing Q; Jiao L
    Small; 2019 Sep; 15(36):e1901775. PubMed ID: 31339229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bi-Sb Nanocrystals Embedded in Phosphorus as High-Performance Potassium Ion Battery Electrodes.
    Chen KT; Tuan HY
    ACS Nano; 2020 Sep; 14(9):11648-11661. PubMed ID: 32886479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries.
    Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F
    J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SnO2/Reduced Graphene Oxide Nanocomposite as Anode Material for Lithium-Ion Batteries with Enhanced Cyclability.
    Jiang W; Zhao X; Ma Z; Lin J; Lu C
    J Nanosci Nanotechnol; 2016 Apr; 16(4):4136-40. PubMed ID: 27451777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen and Oxygen Co-Doped Porous Hard Carbon Nanospheres with Core-Shell Architecture as Anode Materials for Superior Potassium-Ion Storage.
    Chong S; Yuan L; Li T; Shu C; Qiao S; Dong S; Liu Z; Yang J; Liu HK; Dou SX; Huang W
    Small; 2022 Feb; 18(8):e2104296. PubMed ID: 34873861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.
    Zeng L; Zheng C; Deng C; Ding X; Wei M
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2182-7. PubMed ID: 23438299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile and Scalable Preparation of a MoS₂/Carbon Nanotube Nanocomposite Anode for High-Performance Lithium-Ion Batteries: Effects of Carbon Nanotube Content.
    Hai NQ; Kim H; Yoo IS; Hur J
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1494-1499. PubMed ID: 30469212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Cycle Stability of Zinc Sulfide Anode for High-Performance Lithium-Ion Storage: Effect of Conductive Hybrid Matrix on Active ZnS.
    Nguyen QH; Park T; Hur J
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Carbon Content on the Electrochemical Performances of MoS2-C Nanocomposites for Li-Ion Batteries.
    Sun W; Hu Z; Wang C; Tao Z; Chou SL; Kang YM; Liu HK
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22168-74. PubMed ID: 27502442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Yolk-shell structured CoSe
    Sun X; Zeng S; Man R; Wang L; Zhang B; Tian F; Qian Y; Xu L
    Nanoscale; 2021 Jun; 13(23):10385-10392. PubMed ID: 34002174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.