BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31251560)

  • 21. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN
    Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs.
    Bayburt TH; Grinkova YV; Sligar SG
    Arch Biochem Biophys; 2006 Jun; 450(2):215-22. PubMed ID: 16620766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy.
    Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM
    J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic diffusional sizing probes lipid nanodiscs formation.
    Azouz M; Gonin M; Fiedler S; Faherty J; Decossas M; Cullin C; Villette S; Lafleur M; D Alves I; Lecomte S; Ciaccafava A
    Biochim Biophys Acta Biomembr; 2020 Jun; 1862(6):183215. PubMed ID: 32061645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry.
    Hebling CM; Morgan CR; Stafford DW; Jorgenson JW; Rand KD; Engen JR
    Anal Chem; 2010 Jul; 82(13):5415-9. PubMed ID: 20518534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.
    Ulmschneider JP
    Biophys J; 2017 Jul; 113(1):73-81. PubMed ID: 28700927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the Lipid Selectivity of Membrane Proteins in Heterogeneous Nanodiscs.
    Keener JE; Jayasekera HS; Marty MT
    Anal Chem; 2022 Jun; 94(23):8497-8505. PubMed ID: 35621361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating Daptomycin-Membrane Interactions Using Native MS and Fast Photochemical Oxidation of Peptides in Nanodiscs.
    Reid DJ; Dash T; Wang Z; Aspinwall CA; Marty MT
    Anal Chem; 2023 Mar; 95(11):4984-4991. PubMed ID: 36888920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy.
    Bechinger B
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):157-83. PubMed ID: 10590307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymorphic phospholipid phase transitions as tools to understand peptide-lipid interactions.
    Tournois H; de Kruijff B
    Chem Phys Lipids; 1991 Mar; 57(2-3):327-40. PubMed ID: 1711420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of hydrophobic and amphipathic antimicrobial peptides with lipid bicelles.
    Bortolus M; Dalzini A; Toniolo C; Hahm KS; Maniero AL
    J Pept Sci; 2014 Jul; 20(7):517-25. PubMed ID: 24863176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of size-controlled, denaturation-resistant lipid nanodiscs by an amphiphilic self-polymerizing peptide.
    Kondo H; Ikeda K; Nakano M
    Colloids Surf B Biointerfaces; 2016 Oct; 146():423-30. PubMed ID: 27393815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure analysis of the membrane-bound dermcidin-derived peptide SSL-25 from human sweat.
    Mühlhäuser P; Wadhwani P; Strandberg E; Bürck J; Ulrich AS
    Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2308-2318. PubMed ID: 28888369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholesteryl Hemisuccinate Is Not a Good Replacement for Cholesterol in Lipid Nanodiscs.
    Augustyn B; Stepien P; Poojari C; Mobarak E; Polit A; Wisniewska-Becker A; Róg T
    J Phys Chem B; 2019 Nov; 123(46):9839-9845. PubMed ID: 31674185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversible disc-micellization of dimyristoylphosphatidylcholine bilayers induced by melittin and [Ala-14]melittin.
    Dempsey CE; Sternberg B
    Biochim Biophys Acta; 1991 Jan; 1061(2):175-84. PubMed ID: 1998691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NMR Studies of lipid lateral diffusion in the DMPC/gramicidin D/water system: peptide aggregation and obstruction effects.
    Orädd G; Lindblom G
    Biophys J; 2004 Aug; 87(2):980-7. PubMed ID: 15298904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Static and dynamic properties of phospholipid bilayer nanodiscs.
    Nakano M; Fukuda M; Kudo T; Miyazaki M; Wada Y; Matsuzaki N; Endo H; Handa T
    J Am Chem Soc; 2009 Jun; 131(23):8308-12. PubMed ID: 19456103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melittin-induced cholesterol reorganization in lipid bilayer membranes.
    Qian S; Heller WT
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2253-60. PubMed ID: 26074009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulations of lipid nanodiscs.
    Pourmousa M; Pastor RW
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2094-2107. PubMed ID: 29729280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.