These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31251567)

  • 1. Reversible Hydrogel Photopatterning: Spatial and Temporal Control over Gel Mechanical Properties Using Visible Light Photoredox Catalysis.
    Amir F; Liles KP; Delawder AO; Colley ND; Palmquist MS; Linder HR; Sell SA; Barnes JC
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24627-24638. PubMed ID: 31251567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoredox-Based Actuation of an Artificial Molecular Muscle.
    Liles KP; Greene AF; Danielson MK; Colley ND; Wellen A; Fisher JM; Barnes JC
    Macromol Rapid Commun; 2018 Sep; 39(17):e1700781. PubMed ID: 29363212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic, multimodal hydrogel actuators using porphyrin-based visible light photoredox catalysis in a thermoresponsive polymer network.
    Amir F; Li X; Gruschka MC; Colley ND; Li L; Li R; Linder HR; Sell SA; Barnes JC
    Chem Sci; 2020 Sep; 11(40):10910-10920. PubMed ID: 34094340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driving Quick and Large Amplitude Contraction of Viologen-Incorporated Poly-l-Lysine-Based Hydrogel by Reduction.
    Wang B; Tahara H; Sagara T
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36415-36424. PubMed ID: 30273492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling.
    Homma K; Chang AC; Yamamoto S; Tamate R; Ueki T; Nakanishi J
    Acta Biomater; 2021 Sep; 132():103-113. PubMed ID: 33744500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encoding Hydrogel Mechanics via Network Cross-Linking Structure.
    Schweller RM; West JL
    ACS Biomater Sci Eng; 2015 May; 1(5):335-344. PubMed ID: 26082943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Recovery Double Cross-Linking Hydrogel with Stable Mechanical Properties and High Resilience Triggered by Visible Light.
    Zhu L; Qiu J; Sakai E; Ito K
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13593-13601. PubMed ID: 28322540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-cross-linked PLA-PEO-PLA hydrogels from self-assembled physical networks: mechanical properties and influence of assumed constitutive relationships.
    Sanabria-DeLong N; Crosby AJ; Tew GN
    Biomacromolecules; 2008 Oct; 9(10):2784-91. PubMed ID: 18817440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox of Viologen for Powering and Coloring.
    Sagara T; Tahara H
    Chem Rec; 2021 Sep; 21(9):2375-2388. PubMed ID: 34036724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness.
    Pedron S; Pritchard AM; Vincil GA; Andrade B; Zimmerman SC; Harley BA
    Biomacromolecules; 2017 Apr; 18(4):1393-1400. PubMed ID: 28245360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoswitchable hydrogel surface topographies by polymerisation-induced diffusion.
    Stumpel JE; Liu D; Broer DJ; Schenning AP
    Chemistry; 2013 Aug; 19(33):10922-7. PubMed ID: 23821576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Xanthan gum-based hydrogel with Fe
    Kang M; Oderinde O; Liu S; Huang Q; Ma W; Yao F; Fu G
    Carbohydr Polym; 2019 Jan; 203():139-147. PubMed ID: 30318197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Strategies and Redox-Dependent Applications of Insoluble Viologen-Based Covalent Organic Polymers.
    Ċ korjanc T; Shetty D; Olson MA; Trabolsi A
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6705-6716. PubMed ID: 30667215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Facile Approach for Anisotropic Hydrogel with Light-Regulated Stiffness and Its Application to Achieve Mechanical Toughening.
    Gao Y; Wang P; Zhao F; Liu X; Wu J; Hu J
    Macromol Rapid Commun; 2022 May; 43(10):e2200077. PubMed ID: 35298857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus-responsive hydrogels made from biosynthetic fibrinogen conjugates for tissue engineering: structural characterization.
    Frisman I; Shachaf Y; Seliktar D; Bianco-Peled H
    Langmuir; 2011 Jun; 27(11):6977-86. PubMed ID: 21542599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic loading and photoredox-based release of molecular cargo from oligoviologen-crosslinked microparticles.
    Palmquist MS; Gruschka MC; Dorsainvil JM; Delawder AO; Saak TM; Danielson MK; Barnes JC
    Polym Chem; 2022 Apr; 13(15):2115-2122. PubMed ID: 36188127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes.
    Santhanam S; Liang J; Struckhoff J; Hamilton PD; Ravi N
    Acta Biomater; 2016 Oct; 43():327-337. PubMed ID: 27481290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.