These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31251600)

  • 21. Acid/alkali pretreatment enhances the formation of vivianite during anaerobic fermentation of waste activated sludge.
    Hu D; Zhu N; Li Y; Yan Y; Zhang C
    J Environ Manage; 2022 Oct; 319():115760. PubMed ID: 35863301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous waste activated sludge and food waste co-fermentation for synchronously recovering vivianite and volatile fatty acids at different sludge retention times: Performance and microbial response.
    Wu Y; Cao J; Zhang Q; Xu R; Fang F; Feng Q; Li C; Xue Z; Luo J
    Bioresour Technol; 2020 Oct; 313():123610. PubMed ID: 32504871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery.
    Wilfert P; Dugulan AI; Goubitz K; Korving L; Witkamp GJ; Van Loosdrecht MCM
    Water Res; 2018 Nov; 144():312-321. PubMed ID: 30053622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Optimization of Denitrifying Phosphorus Removal Performance Based on ABR-MBR Combined Process].
    Cheng CY; Zhao SH; Lü L; Wu P; Shen YL
    Huan Jing Ke Xue; 2016 Nov; 37(11):4282-4288. PubMed ID: 29964682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sustainable strategy for recovery of phosphorus as vivianite from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization.
    Yang L; Guo X; Liang S; Yang F; Wen M; Yuan S; Xiao K; Yu W; Hu J; Hou H; Yang J
    Water Res; 2023 Apr; 233():119769. PubMed ID: 36841170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of ferric-phosphate forms on phosphorus release and the performance of anaerobic fermentation of waste activated sludge.
    Zhang Z; Ping Q; Gao D; Vanrolleghem PA; Li Y
    Bioresour Technol; 2021 Mar; 323():124622. PubMed ID: 33421830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological nitrogen and phosphorus removal in UCT-type MBR process.
    Lee H; Han J; Yun Z
    Water Sci Technol; 2009; 59(11):2093-9. PubMed ID: 19494447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vivianite recovery from high concentration phosphorus wastewater with mine drainage as iron sources.
    Wang S; Li N; Yuan Q; Liang D; Chang J; Wang X; Ren N
    Sci Total Environ; 2023 Feb; 858(Pt 3):160098. PubMed ID: 36370783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vivianite precipitation for iron recovery from anaerobic groundwater.
    Goedhart R; Müller S; van Loosdrecht MCM; van Halem D
    Water Res; 2022 Jun; 217():118345. PubMed ID: 35460977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of solid retention time on IFAS-MBR systems: analysis of system behavior.
    Mannina G; Capodici M; Cosenza A; Di Trapani D; Viviani G
    Environ Technol; 2019 Jun; 40(14):1840-1852. PubMed ID: 29350114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of an integrated system of membrane bioreactor and worm reactor by phosphorus removal using additional post-chemical treatment.
    Liu J; Zuo W; Tian Y; Zhang J; Li H; Li L
    Water Sci Technol; 2016 Nov; 74(9):2202-2210. PubMed ID: 27842040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cost effective and advanced phosphorus removal in membrane bioreactors for a decentralised wastewater technology.
    Gnirss R; Lesjean B; Adam C; Buisson H
    Water Sci Technol; 2003; 47(12):133-9. PubMed ID: 12926680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system.
    Wang Y; Zheng SJ; Pei LY; Ke L; Peng DC; Xia SQ
    Environ Technol; 2014; 35(21-24):2734-42. PubMed ID: 25176308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon nanotubes accelerates the bio-induced vivianite formation.
    He Z; Chang J; Feng Y; Wang S; Yuan Q; Liang D; Liu J; Li N
    Sci Total Environ; 2022 Oct; 844():157060. PubMed ID: 35780876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a process for the recovery of phosphorus resource from digested sludge by crystallization technology.
    Shimamura K; Ishikawa H; Mizuoka A; Hirasawa I
    Water Sci Technol; 2008; 57(3):451-6. PubMed ID: 18309226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated fixed-film activated sludge membrane bioreactors versus membrane bioreactors for nutrient removal: A comprehensive comparison.
    Mannina G; Ekama GA; Capodici M; Cosenza A; Di Trapani D; Ødegaard H
    J Environ Manage; 2018 Nov; 226():347-357. PubMed ID: 30130704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unravelling key factors controlling vivianite formation during anaerobic digestion of waste activated sludge.
    Hao X; Yu W; Yuan T; Wu Y; van Loosdrecht MCM
    Water Res; 2022 Sep; 223():118976. PubMed ID: 36001903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors.
    Zhang Z; Wang Y; Leslie GL; Waite TD
    Water Res; 2015 Feb; 69():210-222. PubMed ID: 25482913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effects of Influent C/N Ratios on Denitrifying Phosphorus Removal Performance Based on ABR-MBR Combined Process].
    Wu P; Cheng CY; Shen YL; Zhao SH; Lü L
    Huan Jing Ke Xue; 2017 Sep; 38(9):3781-3786. PubMed ID: 29965259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.