These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31251619)

  • 1. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based
    Liu J; Rana B; Liu KY; Herbert JM
    J Phys Chem Lett; 2019 Jul; 10(14):3877-3886. PubMed ID: 31251619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytic gradient for the QM/MM-Ewald method using charges derived from the electrostatic potential: Theory, implementation, and application to ab initio molecular dynamics simulation of the aqueous electron.
    Holden ZC; Rana B; Herbert JM
    J Chem Phys; 2019 Apr; 150(14):144115. PubMed ID: 30981237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pair-Pair Approximation to the Generalized Many-Body Expansion: An Alternative to the Four-Body Expansion for ab Initio Prediction of Protein Energetics via Molecular Fragmentation.
    Liu J; Herbert JM
    J Chem Theory Comput; 2016 Feb; 12(2):572-84. PubMed ID: 26730608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aiming for benchmark accuracy with the many-body expansion.
    Richard RM; Lao KU; Herbert JM
    Acc Chem Res; 2014 Sep; 47(9):2828-36. PubMed ID: 24883986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: variational many-body expansion: accounting for exchange repulsion, charge delocalization, and dispersion in the fragment-based explicit polarization method.
    Gao J; Wang Y
    J Chem Phys; 2012 Feb; 136(7):071101. PubMed ID: 22360228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions.
    Paesani F
    Acc Chem Res; 2016 Sep; 49(9):1844-51. PubMed ID: 27548325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The variational explicit polarization potential and analytical first derivative of energy: Towards a next generation force field.
    Xie W; Song L; Truhlar DG; Gao J
    J Chem Phys; 2008 Jun; 128(23):234108. PubMed ID: 18570492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
    Liu J; Zhu T; Wang X; He X; Zhang JZ
    J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating the Convergence of Self-Consistent Field Calculations Using the Many-Body Expansion.
    Ballesteros F; Lao KU
    J Chem Theory Comput; 2022 Jan; 18(1):179-191. PubMed ID: 34881906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab-initio-based global double many-body expansion potential energy surface for the electronic ground state of the ammonia molecule.
    Li YQ; Varandas AJ
    J Phys Chem A; 2010 Jun; 114(24):6669-80. PubMed ID: 20507132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the many-body expansion for large systems. II. Accuracy considerations.
    Lao KU; Liu KY; Richard RM; Herbert JM
    J Chem Phys; 2016 Apr; 144(16):164105. PubMed ID: 27131529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully analytic energy gradient in the fragment molecular orbital method.
    Nagata T; Brorsen K; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2011 Mar; 134(12):124115. PubMed ID: 21456653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steering Orbital Optimization out of Local Minima and Saddle Points Toward Lower Energy.
    Vaucher AC; Reiher M
    J Chem Theory Comput; 2017 Mar; 13(3):1219-1228. PubMed ID: 28207264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytic second derivatives for the efficient electrostatic embedding in the fragment molecular orbital method.
    Nakata H; Fedorov DG
    J Comput Chem; 2018 Sep; 39(25):2039-2050. PubMed ID: 30299549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of many-body expansions and geometry optimizations in fragment-based methods.
    Fedorov DG; Asada N; Nakanishi I; Kitaura K
    Acc Chem Res; 2014 Sep; 47(9):2846-56. PubMed ID: 25144610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplified Ab Initio Molecular Dynamics-Based Raman Spectral Simulations.
    Aprà E; Bhattarai A; Baxter E; Wang S; Johnson GE; Govind N; El-Khoury PZ
    Appl Spectrosc; 2020 Nov; 74(11):1350-1357. PubMed ID: 32285679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Chem Theory Comput; 2023 Feb; 19(4):1276-1285. PubMed ID: 36753486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.