These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31251619)

  • 21. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analytic Gradients for the Effective Fragment Molecular Orbital Method.
    Bertoni C; Gordon MS
    J Chem Theory Comput; 2016 Oct; 12(10):4743-4767. PubMed ID: 27462826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches.
    Ramírez-Solís A; Poteau R; Vela A; Daudey JP
    J Chem Phys; 2005 Apr; 122(16):164306. PubMed ID: 15945683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.
    Ludwig J; Vlachos DG
    J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analytic second derivatives of the energy in the fragment molecular orbital method.
    Nakata H; Nagata T; Fedorov DG; Yokojima S; Kitaura K; Nakamura S
    J Chem Phys; 2013 Apr; 138(16):164103. PubMed ID: 23635107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generalized Switch Functions in the Multilevel Many-Body Expansion Method and Its Application to Water Clusters.
    Chen GD; Weng J; Song G; Li ZH
    J Chem Theory Comput; 2017 May; 13(5):2010-2020. PubMed ID: 28422489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variational and perturbative formulations of quantum mechanical/molecular mechanical free energy with mean-field embedding and its analytical gradients.
    Yamamoto T
    J Chem Phys; 2008 Dec; 129(24):244104. PubMed ID: 19123492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient and accurate fragmentation methods.
    Pruitt SR; Bertoni C; Brorsen KR; Gordon MS
    Acc Chem Res; 2014 Sep; 47(9):2786-94. PubMed ID: 24810424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The many-body expansion combined with neural networks.
    Yao K; Herr JE; Parkhill J
    J Chem Phys; 2017 Jan; 146(1):014106. PubMed ID: 28063436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab-initio simulations of materials using VASP: Density-functional theory and beyond.
    Hafner J
    J Comput Chem; 2008 Oct; 29(13):2044-78. PubMed ID: 18623101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The many-body expansion approach to ab initio calculation of electric field gradients in molecular crystals.
    Gregorovič A
    J Chem Phys; 2020 Mar; 152(12):124105. PubMed ID: 32241128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method.
    Brorsen KR; Zahariev F; Nakata H; Fedorov DG; Gordon MS
    J Chem Theory Comput; 2014 Dec; 10(12):5297-307. PubMed ID: 26583213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics.
    Ufimtsev IS; Martinez TJ
    J Chem Theory Comput; 2009 Oct; 5(10):2619-28. PubMed ID: 26631777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs.
    Liu KY; Herbert JM
    J Chem Phys; 2017 Oct; 147(16):161729. PubMed ID: 29096456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective Reconstruction of Expectation Values from Ab Initio Quantum Embedding.
    Nusspickel M; Ibrahim B; Booth GH
    J Chem Theory Comput; 2023 May; 19(10):2769-2791. PubMed ID: 37155201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum effects on vibrational and electronic spectra of hydrazine studied by "on-the-fly" ab initio ring polymer molecular dynamics.
    Kaczmarek A; Shiga M; Marx D
    J Phys Chem A; 2009 Mar; 113(10):1985-94. PubMed ID: 19199678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular tailoring approach: a route for ab initio treatment of large clusters.
    Sahu N; Gadre SR
    Acc Chem Res; 2014 Sep; 47(9):2739-47. PubMed ID: 24798296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.