BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31251676)

  • 21. How Do Tube Diameter and Vocal Tract Configuration Affect Oral Pressure Oscillation Characteristics Caused by Bubbling During Water Resistance Therapy?
    Guzman M; Castro C; Acevedo K; Moran C; Espinoza V; Quezada C
    J Voice; 2021 Nov; 35(6):935.e1-935.e11. PubMed ID: 32362578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of an artificially lengthened vocal tract on estimated glottal contact quotient in untrained male voices.
    Gaskill CS; Erickson ML
    J Voice; 2010 Jan; 24(1):57-71. PubMed ID: 19135851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB; Engebretson AM; Vemula NR
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonation into a tube as a voice training method: acoustic and physiologic observations.
    Laukkanen AM; Lindholm P; Vilkman E
    Folia Phoniatr Logop; 1995; 47(6):331-8. PubMed ID: 8868938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Flow and Pressure Relationships in Different Tubes Commonly Used for Semi-occluded Vocal Tract Exercises.
    Amarante Andrade P; Wistbacka G; Larsson H; Södersten M; Hammarberg B; Simberg S; Švec JG; Granqvist S
    J Voice; 2016 Jan; 30(1):36-41. PubMed ID: 25873546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How Much Loading Does Water Resistance Voice Therapy Impose on the Vocal Folds? An Experimental Human Study.
    Laukkanen AM; Geneid A; Bula V; Radolf V; Horáček J; Ikävalko T; Kukkonen T; Kankare E; Tyrmi J
    J Voice; 2020 May; 34(3):387-397. PubMed ID: 30470593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the immediate effect of voiced oral high-frequency oscillation and flow phonation with resonance tube in vocally-healthy elderly women.
    Piragibe PC; Silverio KCA; Dassie-Leite AP; Hencke D; Falbot L; Santos K; Batista Y; Siqueira LTD
    Codas; 2020; 32(4):e20190074. PubMed ID: 32049106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Pilot Study Assessing the Therapeutic Potential of a Vibratory Positive Expiratory Pressure Device (Acapella Choice) in the Treatment of Voice Disorders.
    Saccente-Kennedy B; Amarante Andrade P; Epstein R
    J Voice; 2020 May; 34(3):487.e21-487.e30. PubMed ID: 32389238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerodynamic, Electroglottographic, and Acoustic Outcomes after Tube Phonation in Water in Elderly Subjects.
    Guzman M; Saldivar P; Pérez R; Muñoz D
    Folia Phoniatr Logop; 2018; 70(3-4):149-155. PubMed ID: 30149375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source.
    Sundberg J; Titze I; Scherer R
    J Voice; 1993 Mar; 7(1):15-29. PubMed ID: 8353616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.
    Vampola T; Horáček J; Laukkanen AM; Švec JG
    Logoped Phoniatr Vocol; 2015 Apr; 40(1):14-23. PubMed ID: 23517635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Objective analysis of vocal warm-up with special reference to ergonomic factors.
    Vintturi J; Alku P; Lauri ER; Sala E; Sihvo M; Vilkman I
    J Voice; 2001 Mar; 15(1):36-53. PubMed ID: 12269633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of water resistance therapy on vocal fold vibration: a high-speed digital imaging study.
    Guzman M; Laukkanen AM; Traser L; Geneid A; Richter B; Muñoz D; Echternach M
    Logoped Phoniatr Vocol; 2017 Oct; 42(3):99-107. PubMed ID: 27484690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic impedance of an artificially lengthened and constricted vocal tract.
    Story BH; Laukkanen AM; Titze IR
    J Voice; 2000 Dec; 14(4):455-69. PubMed ID: 11130104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Straw Phonation Through Tubes of Varied Lengths on Sustained Vowels in Normal-Voiced Participants.
    Mills RD; Rivedal S; DeMorett C; Maples G; Jiang JJ
    J Voice; 2018 May; 32(3):386.e21-386.e29. PubMed ID: 28648485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Comparison of the Effects of Phonation into a Positive Expiratory Pressure Device and Silicone Tube in Water on the Vocal Mechanism.
    Amarante Andrade P; Frič M; Saccente-Kennedy B; Hruška V
    J Voice; 2023 Nov; ():. PubMed ID: 37957073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vertical laryngeal position and oral pressure variations during resonance tube phonation in water and in air. A pilot study.
    Wistbacka G; Sundberg J; Simberg S
    Logoped Phoniatr Vocol; 2016 Oct; 41(3):117-23. PubMed ID: 26033381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.