These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 31251968)
1. Plant cell-made protein antigens for induction of Oral tolerance. Daniell H; Kulis M; Herzog RW Biotechnol Adv; 2019 Nov; 37(7):107413. PubMed ID: 31251968 [TBL] [Abstract][Full Text] [Related]
2. Role of Small Intestine and Gut Microbiome in Plant-Based Oral Tolerance for Hemophilia. Kumar SRP; Wang X; Avuthu N; Bertolini TB; Terhorst C; Guda C; Daniell H; Herzog RW Front Immunol; 2020; 11():844. PubMed ID: 32508814 [TBL] [Abstract][Full Text] [Related]
3. Oral tolerance to prevent anti-drug antibody formation in protein replacement therapies. Rana J; Muñoz MM; Biswas M Cell Immunol; 2022 Dec; 382():104641. PubMed ID: 36402002 [TBL] [Abstract][Full Text] [Related]
4. Suppression of anti-drug antibody formation against coagulation factor VIII by oral delivery of anti-CD3 monoclonal antibody in hemophilia A mice. Bertolini TB; Herzog RW; Kumar SRP; Sherman A; Rana J; Kaczmarek R; Yamada K; Arisa S; Lillicrap D; Terhorst C; Daniell H; Biswas M Cell Immunol; 2023 Mar; 385():104675. PubMed ID: 36746071 [TBL] [Abstract][Full Text] [Related]
5. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Su J; Zhu L; Sherman A; Wang X; Lin S; Kamesh A; Norikane JH; Streatfield SJ; Herzog RW; Daniell H Biomaterials; 2015 Nov; 70():84-93. PubMed ID: 26302233 [TBL] [Abstract][Full Text] [Related]
6. Oral Tolerance Induction in Hemophilia B Dogs Fed with Transplastomic Lettuce. Herzog RW; Nichols TC; Su J; Zhang B; Sherman A; Merricks EP; Raymer R; Perrin GQ; Häger M; Wiinberg B; Daniell H Mol Ther; 2017 Feb; 25(2):512-522. PubMed ID: 28153098 [TBL] [Abstract][Full Text] [Related]
7. A novel model of sensitization and oral tolerance to peanut protein. Strid J; Thomson M; Hourihane J; Kimber I; Strobel S Immunology; 2004 Nov; 113(3):293-303. PubMed ID: 15500615 [TBL] [Abstract][Full Text] [Related]
8. Oral delivery of therapeutic proteins bioencapsulated in plant cells: preclinical and clinical advances. Khan I; Daniell H Curr Opin Colloid Interface Sci; 2021 Aug; 54():. PubMed ID: 33967586 [TBL] [Abstract][Full Text] [Related]
9. Suppression of antigen-specific T- and B-cell responses by intranasal or oral administration of recombinant bet v 1, the major birch pollen allergen, in a murine model of type I allergy. Wiedermann U; Jahn-Schmid B; Bohle B; Repa A; Renz H; Kraft D; Ebner C J Allergy Clin Immunol; 1999 Jun; 103(6):1202-10. PubMed ID: 10359907 [TBL] [Abstract][Full Text] [Related]
10. Oral tolerance. Weiner HL; da Cunha AP; Quintana F; Wu H Immunol Rev; 2011 May; 241(1):241-59. PubMed ID: 21488901 [TBL] [Abstract][Full Text] [Related]
11. CD4(+) CD25(+) T regulatory cells do not transfer oral tolerance to peanut allergens in a mouse model of peanut allergy. Marcondes Rezende M; Hassing I; Bol-Schoenmakers M; Bleumink R; Boon L; van Bilsen J; Pieters R Clin Exp Allergy; 2011 Sep; 41(9):1324-33. PubMed ID: 21338425 [TBL] [Abstract][Full Text] [Related]
12. Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization. Strid J; Hourihane J; Kimber I; Callard R; Strobel S Clin Exp Allergy; 2005 Jun; 35(6):757-66. PubMed ID: 15969667 [TBL] [Abstract][Full Text] [Related]
13. Regulatory Immune Mechanisms in Tolerance to Food Allergy. Satitsuksanoa P; Jansen K; Głobińska A; van de Veen W; Akdis M Front Immunol; 2018; 9():2939. PubMed ID: 30619299 [TBL] [Abstract][Full Text] [Related]
14. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells. Kwon KC; Daniell H Mol Ther; 2016 Aug; 24(8):1342-50. PubMed ID: 27378236 [TBL] [Abstract][Full Text] [Related]
15. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells. Wang X; Su J; Sherman A; Rogers GL; Liao G; Hoffman BE; Leong KW; Terhorst C; Daniell H; Herzog RW Blood; 2015 Apr; 125(15):2418-27. PubMed ID: 25700434 [TBL] [Abstract][Full Text] [Related]
16. Recombinant allergen and peptide-based approaches for allergy prevention by oral tolerance. Campana R; Huang HJ; Freidl R; Linhart B; Vrtala S; Wekerle T; Karaulov A; Valenta R Semin Immunol; 2017 Apr; 30():67-80. PubMed ID: 28939389 [TBL] [Abstract][Full Text] [Related]
17. The CD28/CTLA-4-B7 signaling pathway is involved in both allergic sensitization and tolerance induction to orally administered peanut proteins. van Wijk F; Nierkens S; de Jong W; Wehrens EJ; Boon L; van Kooten P; Knippels LM; Pieters R J Immunol; 2007 Jun; 178(11):6894-900. PubMed ID: 17513738 [TBL] [Abstract][Full Text] [Related]
18. Plant-based vaccines for oral delivery of type 1 diabetes-related autoantigens: Evaluating oral tolerance mechanisms and disease prevention in NOD mice. Posgai AL; Wasserfall CH; Kwon KC; Daniell H; Schatz DA; Atkinson MA Sci Rep; 2017 Feb; 7():42372. PubMed ID: 28205558 [TBL] [Abstract][Full Text] [Related]
19. Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Huibregtse IL; Snoeck V; de Creus A; Braat H; De Jong EC; Van Deventer SJ; Rottiers P Gastroenterology; 2007 Aug; 133(2):517-28. PubMed ID: 17681173 [TBL] [Abstract][Full Text] [Related]
20. Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Sun JB; Czerkinsky C; Holmgren J Scand J Immunol; 2010 Jan; 71(1):1-11. PubMed ID: 20017804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]