These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31251983)
1. Design and development of a "Y-shaped" microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Zhao C; Sinumvayo JP; Zhang Y; Li Y Metab Eng; 2019 Sep; 55():111-119. PubMed ID: 31251983 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous glucose and xylose utilization by an Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128 [TBL] [Abstract][Full Text] [Related]
3. Consolidated bioprocessing performance of a two-species microbial consortium for butanol production from lignocellulosic biomass. Jiang Y; Lv Y; Wu R; Lu J; Dong W; Zhou J; Zhang W; Xin F; Jiang M Biotechnol Bioeng; 2020 Oct; 117(10):2985-2995. PubMed ID: 32946127 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Xia T; Eiteman MA; Altman E Microb Cell Fact; 2012 Jun; 11():77. PubMed ID: 22691294 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Kim SM; Choi BY; Ryu YS; Jung SH; Park JM; Kim GH; Lee SK Metab Eng; 2015 Jul; 30():141-148. PubMed ID: 26045332 [TBL] [Abstract][Full Text] [Related]
6. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Wang X; Goh EB; Beller HR Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483 [TBL] [Abstract][Full Text] [Related]
7. l-Rhamnose Metabolism in Clostridium beijerinckii Strain DSM 6423. Diallo M; Simons AD; van der Wal H; Collas F; Houweling-Tan B; Kengen SWM; López-Contreras AM Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578270 [TBL] [Abstract][Full Text] [Related]
8. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture. Liu F; Wu W; Tran-Gyamfi MB; Jaryenneh JD; Zhuang X; Davis RW Microb Cell Fact; 2017 Nov; 16(1):192. PubMed ID: 29121935 [TBL] [Abstract][Full Text] [Related]
9. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Vinuselvi P; Lee SK Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432 [TBL] [Abstract][Full Text] [Related]
10. Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using Oh SJ; Lee HJ; Hwang JH; Kim HJ; Shin N; Lee SH; Seo SO; Bhatia SK; Yang YH J Microbiol Biotechnol; 2024 Mar; 34(3):700-709. PubMed ID: 37919866 [TBL] [Abstract][Full Text] [Related]
11. Synthetic Consortium of Escherichia coli for n-Butanol Production by Fermentation of the Glucose-Xylose Mixture. Saini M; Lin LJ; Chiang CJ; Chao YP J Agric Food Chem; 2017 Nov; 65(46):10040-10047. PubMed ID: 29076337 [TBL] [Abstract][Full Text] [Related]
12. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Hanly TJ; Henson MA Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517 [TBL] [Abstract][Full Text] [Related]
13. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway. Rossoni L; Carr R; Baxter S; Cortis R; Thorpe T; Eastham G; Stephens G Microbiology (Reading); 2018 Mar; 164(3):287-298. PubMed ID: 29458683 [TBL] [Abstract][Full Text] [Related]
14. Pretreatment and Detoxification of Acid-Treated Wood Hydrolysates for Pyruvate Production by an Engineered Consortium of Escherichia coli. Rajpurohit H; Eiteman MA Appl Biochem Biotechnol; 2020 Sep; 192(1):243-256. PubMed ID: 32372381 [TBL] [Abstract][Full Text] [Related]
15. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131 [TBL] [Abstract][Full Text] [Related]
16. Novel approach to engineer strains for simultaneous sugar utilization. Gawand P; Hyland P; Ekins A; Martin VJ; Mahadevan R Metab Eng; 2013 Nov; 20():63-72. PubMed ID: 23988492 [TBL] [Abstract][Full Text] [Related]
17. A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Eiteman MA; Lee SA; Altman R; Altman E Biotechnol Bioeng; 2009 Feb; 102(3):822-7. PubMed ID: 18828178 [TBL] [Abstract][Full Text] [Related]
18. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875 [TBL] [Abstract][Full Text] [Related]
19. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327 [TBL] [Abstract][Full Text] [Related]
20. Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts. Gao M; Ploessl D; Shao Z Front Microbiol; 2018; 9():3264. PubMed ID: 30723464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]